IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v67y2014icp9-22.html
   My bibliography  Save this article

On minimum integer representations of weighted games

Author

Listed:
  • Freixas, Josep
  • Kurz, Sascha

Abstract

We study minimum integer representations of weighted games, i.e. representations where the weights are integers and every other integer representation is at least as large in each component. Those minimum integer representations, if they exist at all, are linked with some solution concepts in game theory. Closing existing gaps in the literature, we prove that each weighted game with two types of voters admits a (unique) minimum integer representation, and give new examples for more than two types of voters without a minimum integer representation. We characterize the possible weights in minimum integer representations and give examples for t≥4 types of voters without a minimum integer representation preserving types, i.e. where we additionally require that the weights are equal within equivalence classes of voters.

Suggested Citation

  • Freixas, Josep & Kurz, Sascha, 2014. "On minimum integer representations of weighted games," Mathematical Social Sciences, Elsevier, vol. 67(C), pages 9-22.
  • Handle: RePEc:eee:matsoc:v:67:y:2014:i:c:p:9-22
    DOI: 10.1016/j.mathsocsci.2013.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489613000863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2013.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sascha Kurz, 2012. "On minimum sum representations for weighted voting games," Annals of Operations Research, Springer, vol. 196(1), pages 361-369, July.
    2. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    3. Carreras, Francesc & Freixas, Josep, 1996. "Complete simple games," Mathematical Social Sciences, Elsevier, vol. 32(2), pages 139-155, October.
    4. Josep Freixas & Dorota Marciniak, 2009. "A minimum dimensional class of simple games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 407-414, December.
    5. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    6. Josep Freixas & Xavier Molinero, 2009. "On the existence of a minimum integer representation for weighted voting systems," Annals of Operations Research, Springer, vol. 166(1), pages 243-260, February.
    7. Sascha Kurz & Nikolas Tautenhahn, 2013. "On Dedekind’s problem for complete simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 411-437, May.
    8. Josep Freixas & Xavier Molinero & Salvador Roura, 2012. "Complete voting systems with two classes of voters: weightedness and counting," Annals of Operations Research, Springer, vol. 193(1), pages 273-289, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maaser, Nicola & Stratmann, Thomas, 2024. "Costly voting in weighted committees: The case of moral costs," European Economic Review, Elsevier, vol. 162(C).
    2. Serguei Kaniovski & Sascha Kurz, 2018. "Representation-compatible power indices," Annals of Operations Research, Springer, vol. 264(1), pages 235-265, May.
    3. Flavio Pressacco & Laura Ziani, 2018. "Proper strong-Fibonacci games," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 41(2), pages 489-529, November.
    4. Izabella Stach, 2022. "Reformulation of Public Help Index θ Using Null Player Free Winning Coalitions," Group Decision and Negotiation, Springer, vol. 31(2), pages 317-334, April.
    5. Maaser, Nicola & Paetzel, Fabian & Traub, Stefan, 2019. "Power illusion in coalitional bargaining: An experimental analysis," Games and Economic Behavior, Elsevier, vol. 117(C), pages 433-450.
    6. Josep Freixas & Marc Freixas & Sascha Kurz, 2017. "On the characterization of weighted simple games," Theory and Decision, Springer, vol. 83(4), pages 469-498, December.
    7. Kurz, Sascha, 2021. "A note on the growth of the dimension in complete simple games," Mathematical Social Sciences, Elsevier, vol. 110(C), pages 14-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josep Freixas & Marc Freixas & Sascha Kurz, 2017. "On the characterization of weighted simple games," Theory and Decision, Springer, vol. 83(4), pages 469-498, December.
    2. Molinero, Xavier & Riquelme, Fabián & Serna, Maria, 2015. "Forms of representation for simple games: Sizes, conversions and equivalences," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 87-102.
    3. Serguei Kaniovski & Sascha Kurz, 2018. "Representation-compatible power indices," Annals of Operations Research, Springer, vol. 264(1), pages 235-265, May.
    4. Freixas, Josep & Kaniovski, Serguei, 2014. "The minimum sum representation as an index of voting power," European Journal of Operational Research, Elsevier, vol. 233(3), pages 739-748.
    5. Sascha Kurz & Stefan Napel, 2014. "Heuristic and exact solutions to the inverse power index problem for small voting bodies," Annals of Operations Research, Springer, vol. 215(1), pages 137-163, April.
    6. Xavier Molinero & Maria Serna & Marc Taberner-Ortiz, 2021. "On Weights and Quotas for Weighted Majority Voting Games," Games, MDPI, vol. 12(4), pages 1-25, December.
    7. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    8. Freixas, Josep & Kurz, Sascha, 2013. "The golden number and Fibonacci sequences in the design of voting structures," European Journal of Operational Research, Elsevier, vol. 226(2), pages 246-257.
    9. Sascha Kurz & Nikolas Tautenhahn, 2013. "On Dedekind’s problem for complete simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 411-437, May.
    10. Josep Freixas & Sascha Kurz, 2014. "Enumeration of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum," Annals of Operations Research, Springer, vol. 222(1), pages 317-339, November.
    11. Freixas, Josep & Kurz, Sascha, 2016. "The cost of getting local monotonicity," European Journal of Operational Research, Elsevier, vol. 251(2), pages 600-612.
    12. Josep Freixas & Sascha Kurz, 2019. "Bounds for the Nakamura number," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(4), pages 607-634, April.
    13. Sascha Kurz, 2014. "Measuring Voting Power in Convex Policy Spaces," Economies, MDPI, vol. 2(1), pages 1-33, March.
    14. Sascha Kurz, 2020. "Are weighted games sufficiently good for binary voting?," Papers 2006.05330, arXiv.org, revised Jul 2021.
    15. Monisankar Bishnu & Sonali Roy, 2012. "Hierarchy of players in swap robust voting games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(1), pages 11-22, January.
    16. Sylvain Béal & Marc Deschamps & Mostapha Diss & Issofa Moyouwou, 2022. "Inconsistent weighting in weighted voting games," Public Choice, Springer, vol. 191(1), pages 75-103, April.
    17. Carreras, Francesc, 2005. "A decisiveness index for simple games," European Journal of Operational Research, Elsevier, vol. 163(2), pages 370-387, June.
    18. Le Breton, Michel & Lepelley, Dominique & Macé, Antonin & Merlin, Vincent, 2017. "Le mécanisme optimal de vote au sein du conseil des représentants d’un système fédéral," L'Actualité Economique, Société Canadienne de Science Economique, vol. 93(1-2), pages 203-248, Mars-Juin.
    19. Tanaka, Masato & Matsui, Tomomi, 2022. "Pseudo polynomial size LP formulation for calculating the least core value of weighted voting games," Mathematical Social Sciences, Elsevier, vol. 115(C), pages 47-51.
    20. Sascha Kurz, 2012. "On minimum sum representations for weighted voting games," Annals of Operations Research, Springer, vol. 196(1), pages 361-369, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:67:y:2014:i:c:p:9-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.