IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v31y2021i2p61-76id1569.html
   My bibliography  Save this article

Pattanaik's axioms and the existence of winners preferred with probability at least half

Author

Listed:
  • Somdeb Lahiri

Abstract

We show that three conditions due to Pattanaik, when satisfied by a given profile of state-dependent preferences (linear orders) on a given and fixed set of alternatives and a probability distribution with which the various states of nature occur, are individually sufficient, for the non-emptiness of the set of alternative(s) which are individually preferred to all alternatives other than itself with probability at least half. Before this, we show that since each axiom individually implies Sen-coherence, then, as a consequence of a result obtained earlier, each axiom along with asymmetry of the preferred with at probability at least half relation implies the transitivity of the relation. All the sufficient conditions discussed here are required to apply at least to all those otherwise relevant events that have positive probability. This observation also applies to a sufficient condition for the non-emptiness of the set of alternative(s) which are individually preferred to all alternatives other than itself with probability at least half, called generalised Sen coherence introduced and discussed in earlier research.

Suggested Citation

  • Somdeb Lahiri, 2021. "Pattanaik's axioms and the existence of winners preferred with probability at least half," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 109-122.
  • Handle: RePEc:wut:journl:v:31:y:2021:i:2:p:61-76:id:1569
    DOI: 10.37190/ord210205
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/1569%20-%20published.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord210205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cesarino Bertini & Jacek Mercik & Izabella Stach, 2016. "Indirect control and power," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(2), pages 7-30.
    2. Cesarino Bertini & Gianfranco Gambarelli & Izabella Stach, 2008. "A Public Help Index," Springer Books, in: Matthew Braham & Frank Steffen (ed.), Power, Freedom, and Voting, chapter 5, pages 83-98, Springer.
    3. Kóczy, László Á., 2012. "Beyond Lisbon: Demographic trends and voting power in the European Union Council of Ministers," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 152-158.
    4. Bolus, Stefan, 2011. "Power indices of simple games and vector-weighted majority games by means of binary decision diagrams," European Journal of Operational Research, Elsevier, vol. 210(2), pages 258-272, April.
    5. Berghammer, Rudolf & Bolus, Stefan & Rusinowska, Agnieszka & de Swart, Harrie, 2011. "A relation-algebraic approach to simple games," European Journal of Operational Research, Elsevier, vol. 210(1), pages 68-80, April.
    6. Algaba, E. & Bilbao, J. M. & Fernandez Garcia, J. R. & Lopez, J. J., 2003. "Computing power indices in weighted multiple majority games," Mathematical Social Sciences, Elsevier, vol. 46(1), pages 63-80, August.
    7. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    8. R J Johnston, 1978. "On the Measurement of Power: Some Reactions to Laver," Environment and Planning A, , vol. 10(8), pages 907-914, August.
    9. J. Bilbao & J. Fernández & A. Losada & J. López, 2000. "Generating functions for computing power indices efficiently," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 191-213, December.
    10. Berghammer, Rudolf & Bolus, Stefan, 2012. "On the use of binary decision diagrams for solving problems on simple games," European Journal of Operational Research, Elsevier, vol. 222(3), pages 529-541.
    11. Algaba, E. & Bilbao, J.M. & Fernandez, J.R., 2007. "The distribution of power in the European Constitution," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1752-1766, February.
    12. Dan S. Felsenthal, 2016. "Erratum to: A Well-Behaved Index of a Priori P-Power for Simple N-Person Games," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 33(4), pages 383-383, December.
    13. Dan S. Felsenthal, 2016. "A Well-Behaved Index of a Priori P-Power for Simple N-Person Games," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 33(4), pages 367-381, December.
    14. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    15. Cesarino Bertini & Josep Freixas & Gianfranco Gambarelli & Izabella Stach, 2013. "Comparing Power Indices," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-19.
    16. Chakravarty,Satya R. & Mitra,Manipushpak & Sarkar,Palash, 2015. "A Course on Cooperative Game Theory," Cambridge Books, Cambridge University Press, number 9781107058798, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacherjee, Sanjay & Chakravarty, Satya R. & Sarkar, Palash, 2022. "A General Model for Multi-Parameter Weighted Voting Games," MPRA Paper 115407, University Library of Munich, Germany.
    2. Wilms, Ingo, 2020. "Dynamic programming algorithms for computing power indices in weighted multi-tier games," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 175-192.
    3. Gianfranco Gambarelli & Angelo Uristani, 2009. "Multicameral voting cohesion games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(4), pages 433-460, December.
    4. Meinhardt, Holger Ingmar, 2021. "Disentangle the Florentine Families Network by the Pre-Kernel," MPRA Paper 106482, University Library of Munich, Germany.
    5. Michela Chessa, 2014. "A generating functions approach for computing the Public Good index efficiently," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 658-673, July.
    6. Izabella Stach, 2022. "Reformulation of Public Help Index θ Using Null Player Free Winning Coalitions," Group Decision and Negotiation, Springer, vol. 31(2), pages 317-334, April.
    7. Jochen Staudacher & Felix Wagner & Jan Filipp, 2021. "Dynamic Programming for Computing Power Indices for Weighted Voting Games with Precoalitions," Games, MDPI, vol. 13(1), pages 1-17, December.
    8. Yuto Ushioda & Masato Tanaka & Tomomi Matsui, 2022. "Monte Carlo Methods for the Shapley–Shubik Power Index," Games, MDPI, vol. 13(3), pages 1-14, June.
    9. Berghammer, Rudolf & Bolus, Stefan & Rusinowska, Agnieszka & de Swart, Harrie, 2011. "A relation-algebraic approach to simple games," European Journal of Operational Research, Elsevier, vol. 210(1), pages 68-80, April.
    10. Bolus, Stefan, 2011. "Power indices of simple games and vector-weighted majority games by means of binary decision diagrams," European Journal of Operational Research, Elsevier, vol. 210(2), pages 258-272, April.
    11. Antônio Francisco Neto, 2019. "Generating Functions of Weighted Voting Games, MacMahon’s Partition Analysis, and Clifford Algebras," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 74-101, February.
    12. Antônio Francisco Neto & Carolina Rodrigues Fonseca, 2019. "An approach via generating functions to compute power indices of multiple weighted voting games with incompatible players," Annals of Operations Research, Springer, vol. 279(1), pages 221-249, August.
    13. Sascha Kurz, 2016. "The inverse problem for power distributions in committees," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(1), pages 65-88, June.
    14. Borkowski, Agnieszka, 2003. "Machtverteilung Im Ministerrat Nach Dem Vertrag Von Nizza Und Den Konventsvorschlagen In Einer Erweiterten Europaischen Union," IAMO Discussion Papers 14887, Institute of Agricultural Development in Transition Economies (IAMO).
    15. Benati, Stefano & Rizzi, Romeo & Tovey, Craig, 2015. "The complexity of power indexes with graph restricted coalitions," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 53-63.
    16. Josep Freixas & Montserrat Pons, 2017. "Using the Multilinear Extension to Study Some Probabilistic Power Indices," Group Decision and Negotiation, Springer, vol. 26(3), pages 437-452, May.
    17. Stefano Benati & Giuseppe Vittucci Marzetti, 2021. "Voting power on a graph connected political space with an application to decision-making in the Council of the European Union," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(4), pages 733-761, November.
    18. Alonso-Meijide, J.M. & Casas-Mendez, B. & Holler, M.J. & Lorenzo-Freire, S., 2008. "Computing power indices: Multilinear extensions and new characterizations," European Journal of Operational Research, Elsevier, vol. 188(2), pages 540-554, July.
    19. Fabien Lange & László Kóczy, 2013. "Power indices expressed in terms of minimal winning coalitions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(2), pages 281-292, July.
    20. Lorenzo-Freire, S. & Alonso-Meijide, J.M. & Casas-Mendez, B. & Fiestras-Janeiro, M.G., 2007. "Characterizations of the Deegan-Packel and Johnston power indices," European Journal of Operational Research, Elsevier, vol. 177(1), pages 431-444, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:31:y:2021:i:2:p:61-76:id:1569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.