IDEAS home Printed from https://ideas.repec.org/p/isu/genstf/200910220700001157.html
   My bibliography  Save this paper

Hierarchy of players in swap robust voting games

Author

Listed:
  • Bishnu, Monisankar
  • Roy, Sonali

Abstract

Ordinarily, the process of decision making by a committee through voting is modelled by a monotonic game the range of whose characteristic function is restricted to {0,1}. The decision rule that governs the collective action of a voting body induces a hierarchy in the set of players in terms of the a-priori influence that the players have over the decision making process. In order to determine this hierarchy in a swap robust game, one has to either evaluate a number-based power index (e.g., the Shapley-Shubik index, the Banzhaf-Coleman index) for each player or conduct a pairwise comparison between players in order to find out whether there exists a coalition in which player i is desirable over another player j as a coalition partner. In this paper we outline a much simpler and more elegant mechanism to determine the ranking of players in terms of their a-priori power using only minimal winning coalitions, rather than the entire set of winning coalitions.

Suggested Citation

  • Bishnu, Monisankar & Roy, Sonali, 2009. "Hierarchy of players in swap robust voting games," ISU General Staff Papers 200910220700001157, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genstf:200910220700001157
    as

    Download full text from publisher

    File URL: https://dr.lib.iastate.edu/server/api/core/bitstreams/dd27f153-baab-4ac9-94f0-61cb0f60be52/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moshé Machover & Dan S. Felsenthal, 2001. "The Treaty of Nice and qualified majority voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(3), pages 431-464.
    2. Josep Freixas, 2010. "On ordinal equivalence of the Shapley and Banzhaf values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(4), pages 513-527, October.
    3. Carreras, Francesc & Freixas, Josep, 1996. "Complete simple games," Mathematical Social Sciences, Elsevier, vol. 32(2), pages 139-155, October.
    4. Josep Freixas & Montserrat Pons, 2010. "Hierarchies achievable in simple games," Theory and Decision, Springer, vol. 68(4), pages 393-404, April.
    5. Dan S. Felsenthal & Moshé Machover, 1998. "The Measurement of Voting Power," Books, Edward Elgar Publishing, number 1489.
    6. Taylor Alan & Zwicker William, 1993. "Weighted Voting, Multicameral Representation, and Power," Games and Economic Behavior, Elsevier, vol. 5(1), pages 170-181, January.
    7. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    8. Josep Freixas & Xavier Molinero, 2009. "On the existence of a minimum integer representation for weighted voting systems," Annals of Operations Research, Springer, vol. 166(1), pages 243-260, February.
    9. Werner Kirsch & Jessica Langner, 2010. "Power indices and minimal winning coalitions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(1), pages 33-46, January.
    10. Carreras, Francesc & Freixas, Josep, 2008. "On ordinal equivalence of power measures given by regular semivalues," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 221-234, March.
    11. Saari, Donald G. & Sieberg, Katri K., 2001. "Some Surprising Properties of Power Indices," Games and Economic Behavior, Elsevier, vol. 36(2), pages 241-263, August.
    12. Lawrence Diffo Lambo & Joël Moulen, 2002. "Ordinal equivalence of power notions in voting games," Theory and Decision, Springer, vol. 53(4), pages 313-325, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Freixas, Josep & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Achievable hierarchies in voting games with abstention," European Journal of Operational Research, Elsevier, vol. 236(1), pages 254-260.
    2. Kivinen, Steven, 2023. "On the manipulability of equitable voting rules," Games and Economic Behavior, Elsevier, vol. 141(C), pages 286-302.
    3. Josep Freixas & Roberto Lucchetti, 2016. "Power in voting rules with abstention: an axiomatization of a two components power index," Annals of Operations Research, Springer, vol. 244(2), pages 455-474, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Freixas, Josep & Marciniak, Dorota & Pons, Montserrat, 2012. "On the ordinal equivalence of the Johnston, Banzhaf and Shapley power indices," European Journal of Operational Research, Elsevier, vol. 216(2), pages 367-375.
    2. Josep Freixas & Sascha Kurz, 2014. "Enumeration of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum," Annals of Operations Research, Springer, vol. 222(1), pages 317-339, November.
    3. Parker, Cameron, 2012. "The influence relation for ternary voting games," Games and Economic Behavior, Elsevier, vol. 75(2), pages 867-881.
    4. Carreras, Francesc & Freixas, Josep, 2008. "On ordinal equivalence of power measures given by regular semivalues," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 221-234, March.
    5. Freixas, Josep & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Achievable hierarchies in voting games with abstention," European Journal of Operational Research, Elsevier, vol. 236(1), pages 254-260.
    6. Joseph Armel Momo Kenfack & Bertrand Tchantcho & Bill Proces Tsague, 2019. "On the ordinal equivalence of the Jonhston, Banzhaf and Shapley–Shubik power indices for voting games with abstention," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 647-671, June.
    7. Freixas, Josep & Kaniovski, Serguei, 2014. "The minimum sum representation as an index of voting power," European Journal of Operational Research, Elsevier, vol. 233(3), pages 739-748.
    8. Josep Freixas & Dorota Marciniak, 2013. "Egalitarian property for power indices," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(1), pages 207-227, January.
    9. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    10. Freixas, Josep & Kurz, Sascha, 2013. "The golden number and Fibonacci sequences in the design of voting structures," European Journal of Operational Research, Elsevier, vol. 226(2), pages 246-257.
    11. Friedman, Jane & Parker, Cameron, 2018. "The conditional Shapley–Shubik measure for ternary voting games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 379-390.
    12. Josep Freixas & Montserrat Pons, 2017. "Using the Multilinear Extension to Study Some Probabilistic Power Indices," Group Decision and Negotiation, Springer, vol. 26(3), pages 437-452, May.
    13. Chameni Nembua, C. & Miamo Wendji, C., 2016. "Ordinal equivalence of values, Pigou–Dalton transfers and inequality in TU-games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 117-133.
    14. Dwight Bean, 2012. "Proportional quota weighted voting system hierarchies II," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 907-918, October.
    15. Serguei Kaniovski & Sascha Kurz, 2018. "Representation-compatible power indices," Annals of Operations Research, Springer, vol. 264(1), pages 235-265, May.
    16. Sascha Kurz & Stefan Napel, 2014. "Heuristic and exact solutions to the inverse power index problem for small voting bodies," Annals of Operations Research, Springer, vol. 215(1), pages 137-163, April.
    17. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    18. Fabrice Barthelemy & Mathieu Martin, 2011. "A Comparison Between the Methods of Apportionment Using Power Indices: the Case of the US Presidential Elections," Annals of Economics and Statistics, GENES, issue 101-102, pages 87-106.
    19. Carreras, Francesc, 2005. "A decisiveness index for simple games," European Journal of Operational Research, Elsevier, vol. 163(2), pages 370-387, June.
    20. Fabrice Barthelemy & Mathieu Martin & Bertrand Tchantcho, 2011. "Some conjectures on the two main power indices," THEMA Working Papers 2011-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genstf:200910220700001157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.