IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921005786.html
   My bibliography  Save this article

Tamed-Euler method for nonlinear switching diffusion systems with locally Hölder diffusion coefficients

Author

Listed:
  • Gao, Xiangyu
  • Liu, Yi
  • Wang, Yanxia
  • Yang, Hongfu
  • Yang, Maosong

Abstract

It is widely known that stochastic differential equations with Markovian switching, involving terms without Lipschitz continuity like |u|1/2+α for α∈[0,1/2), are of great practical value in many fields such as finance and biology. In this paper, we develop the tamed Euler-Maruyama schemes for switching diffusion systems modulated by a Markov chain, under the circumstances that drift coefficient satisfies the locally Lipschitz condition and diffusion coefficient satisfies the locally Hölder continuous condition. Moreover, we obtain the rate of convergence of the numerical algorithm not only at time T but also over the time interval [0,T]. Finally we give the numerical experiments to illustrate the theoretical results.

Suggested Citation

  • Gao, Xiangyu & Liu, Yi & Wang, Yanxia & Yang, Hongfu & Yang, Maosong, 2021. "Tamed-Euler method for nonlinear switching diffusion systems with locally Hölder diffusion coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005786
    DOI: 10.1016/j.chaos.2021.111224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921005786
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ngo, Hoang Long & Luong, Duc Trong, 2019. "Tamed Euler–Maruyama approximation for stochastic differential equations with locally Hölder continuous diffusion coefficients," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 133-140.
    2. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    3. Longstaff, Francis A., 1989. "A nonlinear general equilibrium model of the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 23(2), pages 195-224, August.
    4. Ngo, Hoang-Long & Taguchi, Dai, 2017. "Strong convergence for the Euler–Maruyama approximation of stochastic differential equations with discontinuous coefficients," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 55-63.
    5. Choi Seungmoon, 2009. "Regime-Switching Univariate Diffusion Models of the Short-Term Interest Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-41, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaenko, Sergei, 2008. "The term structure of interest rates in a pure exchange economy where investors have heterogeneous recursive preferences," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(3), pages 457-481, August.
    2. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    3. Nikolaos Panigirtzoglou & James Proudman & John Spicer, 2000. "Persistence and volatility in short-term interest rates," Bank of England working papers 116, Bank of England.
    4. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    5. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    6. Bruno Feunou & Jean-Sébastien Fontaine & Anh Le & Christian Lundblad, 2022. "Tractable Term Structure Models," Management Science, INFORMS, vol. 68(11), pages 8411-8429, November.
    7. Janczura, Joanna & Weron, Rafal, 2010. "Goodness-of-fit testing for regime-switching models," MPRA Paper 22871, University Library of Munich, Germany.
    8. Jan Baldeaux & Fung & Katja Ignatieva & Eckhard Platen, 2015. "A Hybrid Model for Pricing and Hedging of Long-dated Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(4), pages 366-398, September.
    9. Inci, Ahmet Can, 2007. "US-Swiss term structures and exchange rate dynamics," Global Finance Journal, Elsevier, vol. 18(2), pages 270-288.
    10. Munk, Claus, 2002. "Price bounds on bond options, swaptions, caps, and floors assuming only nonnegative interest rates," International Review of Economics & Finance, Elsevier, vol. 11(4), pages 335-347.
    11. Goutte, Stéphane, 2014. "Conditional Markov regime switching model applied to economic modelling," Economic Modelling, Elsevier, vol. 38(C), pages 258-269.
    12. Gourieroux, Christian & Sufana, Razvan, 2011. "Discrete time Wishart term structure models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 815-824, June.
    13. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    14. Bu, Ruijun & Hadri, Kaddour & Kristensen, Dennis, 2021. "Diffusion copulas: Identification and estimation," Journal of Econometrics, Elsevier, vol. 221(2), pages 616-643.
    15. Zura Kakushadze, 2015. "Coping with Negative Short-Rates," Papers 1502.06074, arXiv.org, revised Aug 2015.
    16. Berardi, Andrea, 1995. "Estimating the Cox, ingersoll and Ross model of the term structure: a multivariate approach," Ricerche Economiche, Elsevier, vol. 49(1), pages 51-74, March.
    17. Zhao, Jingjun & Yi, Yulian & Xu, Yang, 2021. "Strong convergence of explicit schemes for highly nonlinear stochastic differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    18. Jiang, George J., 1997. "A generalized one-factor term structure model and pricing of interest rate derivative securities," Research Report 97A34, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    19. Lux, Thomas, 2013. "Exact solutions for the transient densities of continuous-time Markov switching models: With an application to the poisson multifractal model," Kiel Working Papers 1871, Kiel Institute for the World Economy (IfW Kiel).
    20. Hui, Cho-Hoi & Lo, Chi-Fai & Cheung, Chi-Hin & Wong, Andrew, 2020. "Crude oil price dynamics with crash risk under fundamental shocks," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.