IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1950970.html
   My bibliography  Save this article

Extinction and Persistence in Mean of a Novel Delay Impulsive Stochastic Infected Predator-Prey System with Jumps

Author

Listed:
  • Guodong Liu
  • Xiaohong Wang
  • Xinzhu Meng
  • Shujing Gao

Abstract

In this paper, we explore an impulsive stochastic infected predator-prey system with Lévy jumps and delays. The main aim of this paper is to investigate the effects of time delays and impulse stochastic interference on dynamics of the predator-prey model. First, we prove some properties of the subsystem of the system. Second, in view of comparison theorem and limit superior theory, we obtain the sufficient conditions for the extinction of this system. Furthermore, persistence in mean of the system is also investigated by using the theory of impulsive stochastic differential equations (ISDE) and delay differential equations (DDE). Finally, we carry out some simulations to verify our main results and explain the biological implications.

Suggested Citation

  • Guodong Liu & Xiaohong Wang & Xinzhu Meng & Shujing Gao, 2017. "Extinction and Persistence in Mean of a Novel Delay Impulsive Stochastic Infected Predator-Prey System with Jumps," Complexity, Hindawi, vol. 2017, pages 1-15, June.
  • Handle: RePEc:hin:complx:1950970
    DOI: 10.1155/2017/1950970
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/1950970.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/1950970.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/1950970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Dianli & Yuan, Sanling, 2016. "Dynamics of the stochastic Leslie–Gower predator–prey system with randomized intrinsic growth rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 419-428.
    2. Zhang, Xinhong & Li, Wenxue & Liu, Meng & Wang, Ke, 2015. "Dynamics of a stochastic Holling II one-predator two-prey system with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 571-582.
    3. Wencai Zhao & Tongqian Zhang & Zhengbo Chang & Xinzhu Meng & Yulin Liu, 2013. "Dynamical Analysis of SIR Epidemic Models with Distributed Delay," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifei Bian & Wencai Zhao & Yi Song & Rong Yue, 2017. "Dynamical Analysis of a Class of Prey-Predator Model with Beddington-DeAngelis Functional Response, Stochastic Perturbation, and Impulsive Toxicant Input," Complexity, Hindawi, vol. 2017, pages 1-18, December.
    2. Sun, Shulin & Zhang, Xiaofeng, 2018. "Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 38-56.
    3. Gao, Miaomiao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Threshold behavior of a stochastic Lotka–Volterra food chain chemostat model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 191-203.
    4. Liu, Fuxiang & Yang, Ruizhi & Tang, Leiyu, 2019. "Hopf bifurcation in a diffusive predator-prey model with competitive interference," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 250-258.
    5. Mengnan Chi & Wencai Zhao, 2019. "Dynamical Analysis of Two-Microorganism and Single Nutrient Stochastic Chemostat Model with Monod-Haldane Response Function," Complexity, Hindawi, vol. 2019, pages 1-13, March.
    6. Yang, Huan & Tan, Yuanshun & Yang, Jin & Liu, Zijian, 2021. "Extinction and persistence of a tumor-immune model with white noise and pulsed comprehensive therapy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 456-470.
    7. Sun, Xinguo & Zuo, Wenjie & Jiang, Daqing & Hayat, Tasawar, 2018. "Unique stationary distribution and ergodicity of a stochastic Logistic model with distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 864-881.
    8. Rengamannar, Kaviya & Balakrishnan, Ganesh Priya & Palanisamy, Muthukumar & Niezabitowski, Michal, 2020. "Exponential stability of non-linear stochastic delay differential system with generalized delay-dependent impulsive points," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    9. Bor-Sen Chen & Xiangyun Lin & Weihai Zhang & Tianshou Zhou, 2018. "On the System Entropy and Energy Dissipativity of Stochastic Systems and Their Application in Biological Systems," Complexity, Hindawi, vol. 2018, pages 1-18, December.
    10. Yu Mu & Zuxiong Li & Huili Xiang & Hailing Wang, 2019. "Dynamical Analysis of a Stochastic Multispecies Turbidostat Model," Complexity, Hindawi, vol. 2019, pages 1-18, January.
    11. Tingting Ma & Xinzhu Meng & Zhengbo Chang, 2019. "Dynamics and Optimal Harvesting Control for a Stochastic One-Predator-Two-Prey Time Delay System with Jumps," Complexity, Hindawi, vol. 2019, pages 1-19, March.
    12. Lv, Xuejin & Meng, Xinzhu & Wang, Xinzeng, 2018. "Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 273-279.
    13. Rong Liu & Guirong Liu, 2018. "Asymptotic Behavior of a Stochastic Two-Species Competition Model under the Effect of Disease," Complexity, Hindawi, vol. 2018, pages 1-15, November.
    14. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    15. Zhenzhen Shi & Yaning Li & Huidong Cheng, 2019. "Dynamic Analysis of a Pest Management Smith Model with Impulsive State Feedback Control and Continuous Delay," Mathematics, MDPI, vol. 7(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    2. Jaouad Danane & Delfim F. M. Torres, 2023. "Three-Species Predator–Prey Stochastic Delayed Model Driven by Lévy Jumps and with Cooperation among Prey Species," Mathematics, MDPI, vol. 11(7), pages 1-22, March.
    3. Gao, Hongjun & Wang, Ying, 2019. "Stochastic mutualism model under regime switching with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 355-375.
    4. Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
    5. Wang, Sheng & Hu, Guixin & Wei, Tengda & Wang, Linshan, 2020. "Permanence of hybrid competitive Lotka–Volterra system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Khrennikov, Andrei, 2021. "Ultrametric diffusion equation on energy landscape to model disease spread in hierarchic socially clustered population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    7. Gao, Miaomiao & Jiang, Daqing, 2019. "Analysis of stochastic multimolecular biochemical reaction model with lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 601-613.
    8. Liu, Lidan & Meng, Xinzhu & Zhang, Tonghua, 2017. "Optimal control strategy for an impulsive stochastic competition system with time delays and jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 99-113.
    9. Wang, Sheng & Wang, Linshan & Wei, Tengda, 2018. "Permanence and asymptotic behaviors of stochastic predator–prey system with Markovian switching and Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 294-311.
    10. Sheng Wang & Linshan Wang & Tengda Wei, 2017. "Well-Posedness and Asymptotic Behaviors for a Predator-Prey System with Lévy Noise," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 715-725, September.
    11. Liu, Qun & Jiang, Daqing & He, Xiuli & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a stochastic predator–prey model with distributed delay and general functional response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 273-287.
    12. Wu, Jian, 2018. "Stability of a three-species stochastic delay predator–prey system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 492-505.
    13. Liu, Meng & Bai, Chuanzhi & Deng, Meiling & Du, Bo, 2016. "Analysis of stochastic two-prey one-predator model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 176-188.
    14. Zou, Xiaoling & Ma, Pengyu & Zhang, Liren & Lv, Jingliang, 2022. "Dynamic properties for a stochastic food chain model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Wu, Jian, 2020. "Dynamics of a two-predator one-prey stochastic delay model with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    16. Shao, Yuanfu, 2022. "Global stability of a delayed predator–prey system with fear and Holling-type II functional response in deterministic and stochastic environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 65-77.
    17. Gao, Miaomiao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Threshold behavior of a stochastic Lotka–Volterra food chain chemostat model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 191-203.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1950970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.