IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1583-d810438.html
   My bibliography  Save this article

Dynamic Analysis of a COVID-19 Vaccination Model with a Positive Feedback Mechanism and Time-Delay

Author

Listed:
  • Xin Ai

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

  • Xinyu Liu

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

  • Yuting Ding

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

  • Han Li

    (College of Economics and Management, Northeast Forestry University, Harbin 150040, China)

Abstract

As the novel coronavirus pandemic has spread globally since 2019, most countries in the world are conducting vaccination campaigns. First, based on the traditional SIR infectious disease model, we introduce a positive feedback mechanism associated with the vaccination rate, and consider the time delay from antibody production to antibody disappearance after vaccination. We establish an U V a V model for COVID-19 vaccination with a positive feedback mechanism and time-delay. Next, we verify the existence of the equilibrium of the formulated model and analyze its stability. Then, we analyze the existence of the Hopf bifurcation, and use the multiple time scales method to derive the normal form of the Hopf bifurcation, further determining the direction of the Hopf bifurcation and the stability of the periodic solution of the bifurcation. Finally, we collect the parameter data of some countries and regions to determine the reasonable ranges of multiple parameters to ensure the authenticity of simulation results. Numerical simulations are carried out to verify the correctness of the theoretical results. We also give the critical time for controllable widespread antibody failure to provide a reference for strengthening vaccination time. Taking two groups of parameters as examples, the time of COVID-19 vaccine booster injection should be best controlled before 38.5 weeks and 35.3 weeks, respectively. In addition, study the impact of different expiration times on epidemic prevention and control effectiveness. We further explore the impact of changes in vaccination strategies on trends in epidemic prevention and control effectiveness. It could be concluded that, under the same epidemic vaccination strategy, the existence level of antibody is roughly the same, which is consistent with the reality.

Suggested Citation

  • Xin Ai & Xinyu Liu & Yuting Ding & Han Li, 2022. "Dynamic Analysis of a COVID-19 Vaccination Model with a Positive Feedback Mechanism and Time-Delay," Mathematics, MDPI, vol. 10(9), pages 1-24, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1583-:d:810438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Cheng-Cheng & Zhu, Jiang, 2021. "Dynamic analysis of a delayed COVID-19 epidemic with home quarantine in temporal-spatial heterogeneous via global exponential attractor method," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tingting & Guo, Youming, 2022. "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    3. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Prem Kumar, R. & Santra, P.K. & Mahapatra, G.S., 2023. "Global stability and analysing the sensitivity of parameters of a multiple-susceptible population model of SARS-CoV-2 emphasising vaccination drive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 741-766.
    5. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    6. Jung-Hoon Kim & Joo-Young Kim, 2022. "How Should the Structure of Smart Cities Change to Predict and Overcome a Pandemic?," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    7. Vsevolod G. Sorokin & Andrei V. Vyazmin, 2022. "Nonlinear Reaction–Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration," Mathematics, MDPI, vol. 10(11), pages 1-39, May.
    8. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Exact Solutions of Reaction–Diffusion PDEs with Anisotropic Time Delay," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    9. Yu, Zhenhua & Zhang, Jingmeng & Zhang, Yun & Cong, Xuya & Li, Xiaobo & Mostafa, Almetwally M., 2024. "Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    10. Cheng-Cheng Zhu & Jiang Zhu & Jie Shao, 2023. "Epidemiological Investigation: Important Measures for the Prevention and Control of COVID-19 Epidemic in China," Mathematics, MDPI, vol. 11(13), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1583-:d:810438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.