IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/1561569.html
   My bibliography  Save this article

Control Policy Mix in Measles Transmission Dynamics Using Vaccination, Therapy, and Treatment

Author

Listed:
  • Jaharuddin
  • Toni Bakhtiar

Abstract

This paper considers a deterministic model for the dynamics of measles transmission in a population divided into six classes with respect to the disease states: susceptible, vaccinated, exposed, infected, treated, and recovered. First, we investigate the dynamical properties of the SVEITR model such as its equilibrium points, their stability, and parameter sensitivity by applying constant controls. Criteria for determining the stability of disease-free and endemic equilibrium points are provided in terms of basic reproduction number. The model is then extended by incorporating vaccination, therapy, and treatment rates as time-dependent control variables representing the level of coverages. Application of Pontryagin’s maximum principle provides the necessary conditions that must be satisfied for the existence of optimal controls aiming at minimization of the number of exposed and infected individuals simultaneously with the control effort. Numerical simulations that were carried out using the backward sweep method and Runge–Kutta scheme suggest that optimal controls under moderate and high scenarios can effectively reduce the cases of measles. In particular, the moderate scenario that utilizes the existing coverage level of 86% for MCV1 and 69% for MCV2 can degrade the cost functional by 47% of the low scenario. Meanwhile, high scenario that takes the 2020 target of 96% as coverage only makes a slight difference in reducing the number of exposed and infected individuals.

Suggested Citation

  • Jaharuddin & Toni Bakhtiar, 2020. "Control Policy Mix in Measles Transmission Dynamics Using Vaccination, Therapy, and Treatment," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2020, pages 1-20, March.
  • Handle: RePEc:hin:jijmms:1561569
    DOI: 10.1155/2020/1561569
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2020/1561569.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2020/1561569.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/1561569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farman, Muhammad & Xu, Changjin & Shehzad, Aamir & Akgul, Ali, 2024. "Modeling and dynamics of measles via fractional differential operator of singular and non-singular kernels," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 461-488.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:1561569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.