IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics096007792100686x.html
   My bibliography  Save this article

Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel

Author

Listed:
  • Saifullah, Sayed
  • Ali, Amir
  • Franc Doungmo Goufo, Emile

Abstract

This article aims to study the behaviour of a chaotic attractor in the fractal-fractional Mittag-Leffler perspective. The different aspects of the chaotic attractor are observed with different fractal and fractional orders. The existence and uniqueness of the system are presented by using Schauder and Banach fixed point theorems. The stability analysis of the equilibrium points of the system is presented together with Ulam-Hyers stability for the system under consideration. The Lyapunov spectra and the bifurcation in the system with respect to control parameter ζ are studied. The numerical scheme based on the Adam-Bashforth method is established with Lagrangian piecewise interpolation. The complex behaviour of the considered system is numerically illustrated using various fractal and fractional orders. It is observed that, the chaotic attractor self-replicates its pattern in the fractal process when fractal dimension varies.

Suggested Citation

  • Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s096007792100686x
    DOI: 10.1016/j.chaos.2021.111332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100686X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    2. Kanno, Ryutaro, 1998. "Representation of random walk in fractal space-time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 248(1), pages 165-175.
    3. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    4. Dumitru Baleanu & Arran Fernandez & Ali Akgül, 2020. "On a Fractional Operator Combining Proportional and Classical Differintegrals," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
    5. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    6. Qi, Guoyuan & Chen, Guanrong & Du, Shengzhi & Chen, Zengqiang & Yuan, Zhuzhi, 2005. "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 295-308.
    7. Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Chen, Zengqiang & Yang, Yong & Yuan, Zhuzhi, 2008. "A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1187-1196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    2. Zhang, Tianxian & Zhao, Yongqi & Xu, Xiangliang & Wu, Si & Gu, Yujuan, 2024. "Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Xuan, Liu & Ahmad, Shabir & Ullah, Aman & Saifullah, Sayed & Akgül, Ali & Qu, Haidong, 2022. "Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Rubayyi T. Alqahtani & Shabir Ahmad & Ali Akgül, 2022. "On Numerical Analysis of Bio-Ethanol Production Model with the Effect of Recycling and Death Rates under Fractal Fractional Operators with Three Different Kernels," Mathematics, MDPI, vol. 10(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Xuan, Liu & Ahmad, Shabir & Ullah, Aman & Saifullah, Sayed & Akgül, Ali & Qu, Haidong, 2022. "Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    5. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2022. "A computational approach for numerical simulations of the fractal–fractional autoimmune disease model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    6. Babu, N. Ramesh & Balasubramaniam, P., 2022. "Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    9. Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    10. Rashid, Saima & Jarad, Fahd & Alsharidi, Abdulaziz Khalid, 2022. "Numerical investigation of fractional-order cholera epidemic model with transmission dynamics via fractal–fractional operator technique," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    11. Rubayyi T. Alqahtani & Shabir Ahmad & Ali Akgül, 2022. "On Numerical Analysis of Bio-Ethanol Production Model with the Effect of Recycling and Death Rates under Fractal Fractional Operators with Three Different Kernels," Mathematics, MDPI, vol. 10(7), pages 1-23, March.
    12. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    13. Babu, N. Ramesh & Balasubramaniam, P., 2023. "Master–slave synchronization for glucose–insulin metabolism of type-1 diabetic Mellitus model based on new fractal–fractional order derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 282-301.
    14. ARAZ, Seda İĞRET, 2020. "Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    15. Zhang, Tianxian & Zhao, Yongqi & Xu, Xiangliang & Wu, Si & Gu, Yujuan, 2024. "Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    16. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    17. Shloof, A.M. & Senu, N. & Ahmadian, A. & Salahshour, Soheil, 2021. "An efficient operation matrix method for solving fractal–fractional differential equations with generalized Caputo-type fractional–fractal derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 415-435.
    18. Sina Etemad & Albert Shikongo & Kolade M. Owolabi & Brahim Tellab & İbrahim Avcı & Shahram Rezapour & Ravi P. Agarwal, 2022. "A New Fractal-Fractional Version of Giving up Smoking Model: Application of Lagrangian Piece-Wise Interpolation along with Asymptotical Stability," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
    19. Ullah, Malik Zaka & Mallawi, Fouad & Baleanu, Dumitru & Alshomrani, Ali Saleh, 2020. "A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    20. Akgül, Ali & Siddique, Imran, 2021. "Analysis of MHD Couette flow by fractal-fractional differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s096007792100686x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.