IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v208y2023icp246-282.html
   My bibliography  Save this article

Multi-sample learning particle swarm optimization with adaptive crossover operation

Author

Listed:
  • Yang, Xu
  • Li, Hongru

Abstract

Particle swarm optimization (PSO) is a well-known optimization method used for solving various optimization problems. However, PSO suffers from premature convergence and is ineffective in balancing exploration and exploitation when solving complex optimization problems. To overcome these drawbacks of PSO, a multi-sample learning particle swarm optimization with adaptive crossover operation (MLPSO) is proposed. In MLPSO, two novel strategies, multi-sample selecting strategy (MSS) and adaptive sample crossover strategy (ASC), are used to select proper learning samples for the whole population. Firstly, in MSS, two sample pools, namely elite pool and improver pool, are used to save elites and improvers. Elites are the particles with preferable fitness, while improvers denote the particles whose fitness have been improved largely in recent consecutive generations. In each generation, two particles are randomly selected from the two sample pools respectively to breed a learning sample through crossover operation for the whole population. Therefore, the generated learning sample by MSS strategy contains more diversity information. Secondly, in ASC, various crossover operations are conducted for breeding a learning sample according to the evolutionary states. Therefore, the ASC strategy proposed in this paper can realize a better trade-off between exploration and exploitation. Finally, the performance of MLPSO is evaluated using CEC2013, CEC2017 test suites and three engineering optimization problems. Experimental results show that MLPSO outperforms compared seven competitive PSO variants and 19 meta-heuristics algorithms in most functions.

Suggested Citation

  • Yang, Xu & Li, Hongru, 2023. "Multi-sample learning particle swarm optimization with adaptive crossover operation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 246-282.
  • Handle: RePEc:eee:matcom:v:208:y:2023:i:c:p:246-282
    DOI: 10.1016/j.matcom.2022.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422005079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Occorsio, Donatella & Ramella, Giuliana & Themistoclakis, Woula, 2022. "Lagrange–Chebyshev Interpolation for image resizing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 105-126.
    2. Si, Yupeng & Wang, Rongjie & Zhang, Shiqi & Zhou, Wenting & Lin, Anhui & Zeng, Guangmiao, 2022. "Configuration optimization and energy management of hybrid energy system for marine using quantum computing," Energy, Elsevier, vol. 253(C).
    3. Sedighizadeh, Davoud & Masehian, Ellips & Sedighizadeh, Mostafa & Akbaripour, Hossein, 2021. "GEPSO: A new generalized particle swarm optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 194-212.
    4. Eslami, N. & Yazdani, S. & Mirzaei, M. & Hadavandi, E., 2022. "Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 362-395.
    5. Chuanwen, Jiang & Bompard, Etorre, 2005. "A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(1), pages 57-65.
    6. Liu, Jianxun & Shi, Jinfei & Hao, Fei & Dai, Min, 2022. "A reinforced exploration mechanism whale optimization algorithm for continuous optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 23-48.
    7. Örnek, Bülent Nafi & Aydemir, Salih Berkan & Düzenli, Timur & Özak, Bilal, 2022. "A novel version of slime mould algorithm for global optimization and real world engineering problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 253-288.
    8. Patwal, Rituraj Singh & Narang, Nitin & Garg, Harish, 2018. "A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units," Energy, Elsevier, vol. 142(C), pages 822-837.
    9. Issa, Mohamed & Samn, Anas, 2022. "Passive vehicle suspension system optimization using Harris Hawk Optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 328-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Jeng-Shyang & Zhang, Zhen & Chu, Shu-Chuan & Zhang, Si-Qi & Wu, Jimmy Ming-Tai, 2024. "A parallel compact Marine Predators Algorithm applied in time series prediction of Backpropagation neural network (BNN) and engineering optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 65-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changchun Cai & Bing Jiang & Lihua Deng, 2015. "General Dynamic Equivalent Modeling of Microgrid Based on Physical Background," Energies, MDPI, vol. 8(11), pages 1-20, November.
    2. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    3. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    4. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    5. Mohamed Abdel-Basset & Reda Mohamed & Karam M. Sallam & Ripon K. Chakrabortty, 2022. "Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-63, September.
    6. Vangelis Marinakis & Athanassios S. Fokas & George A. Kastis & Nicholas E. Protonotarios, 2023. "Chebyshev Interpolation Using Almost Equally Spaced Points and Applications in Emission Tomography," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    7. González-Parra, Gilberto & Villanueva-Oller, Javier & Navarro-González, F.J. & Ceberio, Josu & Luebben, Giulia, 2024. "A network-based model to assess vaccination strategies for the COVID-19 pandemic by using Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Basu, Mousumi, 2022. "Fuel constrained short-term hydrothermal generation scheduling," Energy, Elsevier, vol. 239(PD).
    9. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    10. Pavan Kumar Singh & Nitin Singh & Richa Negi, 2021. "Short-Term Wind Power Prediction Using Hybrid Auto Regressive Integrated Moving Average Model and Dynamic Particle Swarm Optimization," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 111-138, April.
    11. Kim, H.J. & Kim, M.K., 2023. "A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid," Applied Energy, Elsevier, vol. 332(C).
    12. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    13. Zhe Chen & Zihan Sun & Da Lin & Zhihao Li & Jian Chen, 2024. "Optimal Configuration of Multi-Energy Storage in an Electric–Thermal–Hydrogen Integrated Energy System Considering Extreme Disaster Scenarios," Sustainability, MDPI, vol. 16(6), pages 1-25, March.
    14. Ahmed A. Ewees & Mohammed A. A. Al-qaness & Laith Abualigah & Diego Oliva & Zakariya Yahya Algamal & Ahmed M. Anter & Rehab Ali Ibrahim & Rania M. Ghoniem & Mohamed Abd Elaziz, 2021. "Boosting Arithmetic Optimization Algorithm with Genetic Algorithm Operators for Feature Selection: Case Study on Cox Proportional Hazards Model," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    15. Kaveh, Mehrdad & Mesgari, Mohammad Saadi & Saeidian, Bahram, 2023. "Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 95-135.
    16. Sedighizadeh, Davoud & Masehian, Ellips & Sedighizadeh, Mostafa & Akbaripour, Hossein, 2021. "GEPSO: A new generalized particle swarm optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 194-212.
    17. Qin, Rui & Liu, Yan-Kui, 2010. "Modeling data envelopment analysis by chance method in hybrid uncertain environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(5), pages 922-950.
    18. Chen, Shuixia & Wang, Jian-qiang & Zhang, Hong-yu, 2019. "A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 41-54.
    19. Asmita Ajay Rathod & Balaji Subramanian, 2022. "Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities," Sustainability, MDPI, vol. 14(24), pages 1-35, December.
    20. Martinez-Rojas, Marcela & Sumper, Andreas & Gomis-Bellmunt, Oriol & Sudrià-Andreu, Antoni, 2011. "Reactive power dispatch in wind farms using particle swarm optimization technique and feasible solutions search," Applied Energy, Elsevier, vol. 88(12), pages 4678-4686.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:208:y:2023:i:c:p:246-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.