IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v207y2023icp151-188.html
   My bibliography  Save this article

CWOA: A novel complex-valued encoding whale optimization algorithm

Author

Listed:
  • Zhang, Jinzhong
  • Zhang, Gang
  • Kong, Min
  • Zhang, Tan
  • Wang, Duansong
  • Chen, Rui

Abstract

The whale optimization algorithm (WOA) is inspired by humpback whales’ bubble-net assaulting mechanism and imitates behaviors such as shrinking and enveloping prey, spiral bubble-net assaulting prey, and variational searching for prey to determine the best solution. However, the basic WOA has the disadvantages of low computation precision, slow convergence rate and easily falling into search stagnation. To strengthen the optimization quality and search reliability, this paper presents a distinctive complex-valued encoding WOA (CWOA) to satisfy the function optimization and engineering design. The complex-valued methodology utilizes a diploid structure to encode individual whales, and the real and imaginary components are added to the basic WOA to revise the position of each humpback whale, which converts the two-dimensional encoding area to a one-dimensional expression area and utilizes the real and imaginary components to illustrate a feasible solution with inherent parallelism. This methodology enriches the population diversity, furthers the individual information, elevates the general search ability, avoids premature convergence and promotes convergence efficiency. The CWOA not only utilizes the characteristics of the complex-valued methodology to avoid slipping into local optima but also exhibits excellent adaptability and robustness to determine the accurate value. Sixteen benchmark test functions and eight engineering designs are used to verify the applicability and practicability of the CWOA. The experimental results demonstrate that the optimization productivity and search performance of the CWOA are superior to those of other algorithms. In addition, the CWOA is a more successful and efficacious method that completely stabilizes exploration and exploitation to establish a quicker convergence rate, higher computation precision, greater resilience and stability.

Suggested Citation

  • Zhang, Jinzhong & Zhang, Gang & Kong, Min & Zhang, Tan & Wang, Duansong & Chen, Rui, 2023. "CWOA: A novel complex-valued encoding whale optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 151-188.
  • Handle: RePEc:eee:matcom:v:207:y:2023:i:c:p:151-188
    DOI: 10.1016/j.matcom.2022.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422005092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Wagdy Mohamed, 2018. "A novel differential evolution algorithm for solving constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 659-692, March.
    2. Tawhid, M.A. & Ibrahim, A.M., 2021. "Solving nonlinear systems and unconstrained optimization problems by hybridizing whale optimization algorithm and flower pollination algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1342-1369.
    3. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    4. Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
    5. Zhiwei Ye & Wenhui Cai & Mingwei Wang & Aixin Zhang & Wen Zhou & Na Deng & Zimei Wei & Daxin Zhu, 2022. "Association Rule Mining Based on Hybrid Whale Optimization Algorithm," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 18(1), pages 1-22, January.
    6. Jin Yi & Xinyu Li & Chih-Hsing Chu & Liang Gao, 2019. "Parallel chaotic local search enhanced harmony search algorithm for engineering design optimization," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 405-428, January.
    7. Liu, Jianxun & Shi, Jinfei & Hao, Fei & Dai, Min, 2022. "A reinforced exploration mechanism whale optimization algorithm for continuous optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 23-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Huaijun & Liu, Linna & Fang, Jianyin & Qu, Boyang & Huang, Quanzhen, 2023. "A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 794-817.
    2. Yiying Zhang & Zhigang Jin, 2022. "Comprehensive learning Jaya algorithm for engineering design optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1229-1253, June.
    3. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Abdul Hai Alami & Enas Taha Sayed, 2023. "Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    4. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    5. Chenyang Gao & Teng Li & Yuelin Gao & Ziyu Zhang, 2024. "A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems," Mathematics, MDPI, vol. 12(3), pages 1-35, January.
    6. Chao Zhou & Bing Gao & Haiyue Yang & Xudong Zhang & Jiaqi Liu & Lingling Li, 2022. "Junction Temperature Prediction of Insulated-Gate Bipolar Transistors in Wind Power Systems Based on an Improved Honey Badger Algorithm," Energies, MDPI, vol. 15(19), pages 1-19, October.
    7. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    8. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    9. Ghareeb Moustafa & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Hany S. E. Mansour, 2023. "A Gradient-Based Optimizer with a Crossover Operator for Distribution Static VAR Compensator (D-SVC) Sizing and Placement in Electrical Systems," Mathematics, MDPI, vol. 11(5), pages 1-30, February.
    10. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    11. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    12. Pan, Jeng-Shyang & Zhang, Li-Gang & Wang, Ruo-Bin & Snášel, Václav & Chu, Shu-Chuan, 2022. "Gannet optimization algorithm : A new metaheuristic algorithm for solving engineering optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 343-373.
    13. Vikneswari Someetheram & Muhammad Fadhil Marsani & Mohd Shareduwan Mohd Kasihmuddin & Nur Ezlin Zamri & Siti Syatirah Muhammad Sidik & Siti Zulaikha Mohd Jamaludin & Mohd. Asyraf Mansor, 2022. "Random Maximum 2 Satisfiability Logic in Discrete Hopfield Neural Network Incorporating Improved Election Algorithm," Mathematics, MDPI, vol. 10(24), pages 1-29, December.
    14. Tawhid, Mohamed A. & Ibrahim, Abdelmonem M., 2022. "Improved salp swarm algorithm combined with chaos," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 113-148.
    15. Wenchao Yi & Liang Gao & Zhi Pei & Jiansha Lu & Yong Chen, 2021. "ε Constrained differential evolution using halfspace partition for optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 157-178, January.
    16. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.
    17. Lei Chen & Yikai Zhao & Yunpeng Ma & Bingjie Zhao & Changzhou Feng, 2023. "Improving Wild Horse Optimizer: Integrating Multistrategy for Robust Performance across Multiple Engineering Problems and Evaluation Benchmarks," Mathematics, MDPI, vol. 11(18), pages 1-35, September.
    18. He, Jiao & Jin, Xin & Xie, S.Y. & Cao, Le & Lin, Yifan & Wang, Ning, 2019. "Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines," Renewable Energy, Elsevier, vol. 141(C), pages 305-321.
    19. R, Revathi & N, Senthilnathan & V, Kumar Chinnaiyan, 2024. "Hybrid optimization approach for power scheduling with PV-battery system in smart grids," Energy, Elsevier, vol. 290(C).
    20. Elham Ghanbari-Adivi & Mohammad Ehteram & Alireza Farrokhi & Zohreh Sheikh Khozani, 2022. "Combining Radial Basis Function Neural Network Models and Inclusive Multiple Models for Predicting Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4313-4342, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:207:y:2023:i:c:p:151-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.