IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v167y2024ics0304414923002004.html
   My bibliography  Save this article

Elastic drifted Brownian motions and non-local boundary conditions

Author

Listed:
  • D’Ovidio, Mirko
  • Iafrate, Francesco

Abstract

We provide a deep connection between elastic drifted Brownian motions and inverses to tempered subordinators. Based on this connection, we establish a link between multiplicative functionals and dynamical boundary conditions given in terms of non-local equations in time. Indeed, we show that the multiplicative functional associated to the elastic Brownian motion with drift is equivalent to a functional associated with non-local boundary conditions of tempered type. By exploiting such connections we write some functionals of the drifted Brownian motion in terms of a simple (positive and non-decreasing) process, the inverse of a tempered subordinator. In our view, such a representation is useful in many applications and brings new light on dynamic boundary value problems.

Suggested Citation

  • D’Ovidio, Mirko & Iafrate, Francesco, 2024. "Elastic drifted Brownian motions and non-local boundary conditions," Stochastic Processes and their Applications, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:spapps:v:167:y:2024:i:c:s0304414923002004
    DOI: 10.1016/j.spa.2023.104228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923002004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.104228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fausto Ferrari, 2018. "Weyl and Marchaud Derivatives: A Forgotten History," Mathematics, MDPI, vol. 6(1), pages 1-25, January.
    2. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    3. Alvaro Cartea & Diego del-Castillo-Negrete, 2007. "On the Fluid Limit of the Continuous-Time Random Walk with General Lévy Jump Distribution Functions," Birkbeck Working Papers in Economics and Finance 0708, Birkbeck, Department of Economics, Mathematics & Statistics.
    4. Chen, Zhen-Qing, 2017. "Time fractional equations and probabilistic representation," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 168-174.
    5. Iafrate, F. & Orsingher, E., 2021. "On the sojourn time of a generalized Brownian meander," Statistics & Probability Letters, Elsevier, vol. 168(C).
    6. repec:dau:papers:123456789/1392 is not listed on IDEAS
    7. Rosinski, Jan, 2007. "Tempering stable processes," Stochastic Processes and their Applications, Elsevier, vol. 117(6), pages 677-707, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Iafrate & Costantino Ricciuti, 2024. "Some Families of Random Fields Related to Multiparameter Lévy Processes," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3055-3088, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Xiaoli & Zhuang, Xintian, 2017. "Measuring financial risk and portfolio reversion with time changed tempered stable Lévy processes," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 148-159.
    2. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    3. Sztonyk, Pawel, 2011. "Transition density estimates for jump Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1245-1265, June.
    4. Torben G. Andersen & Nicola Fusari & Viktor Todorov & Rasmus T. Varneskov, 2018. "Option Panels in Pure-Jump Settings," CREATES Research Papers 2018-04, Department of Economics and Business Economics, Aarhus University.
    5. Álvaro Cartea, 2013. "Derivatives pricing with marked point processes using tick-by-tick data," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 111-123, January.
    6. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
    7. Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.
    8. Adam W. Kolkiewicz & Fangyuan Sally Lin, 2017. "Pricing Surrender Risk in Ratchet Equity-Index Annuities under Regime-Switching Lévy Processes," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(3), pages 433-457, July.
    9. Kappus, Johanna, 2012. "Nonparametric adaptive estimation of linear functionals for low frequency observed Lévy processes," SFB 649 Discussion Papers 2012-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes," Papers 2011.09147, arXiv.org.
    11. Ioannis Kyriakou & Panos K. Pouliasis & Nikos C. Papapostolou, 2016. "Jumps and stochastic volatility in crude oil prices and advances in average option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1859-1873, December.
    12. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    13. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    14. Todorov, Viktor & Tauchen, George, 2010. "Activity signature functions for high-frequency data analysis," Journal of Econometrics, Elsevier, vol. 154(2), pages 125-138, February.
    15. Hatem Ben‐Ameur & Rim Chérif & Bruno Rémillard, 2020. "Dynamic programming for valuing American options under a variance‐gamma process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1548-1561, October.
    16. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2013. "Tempered stable Ornstein-Uhlenbeck processes: a practical view," Temi di discussione (Economic working papers) 912, Bank of Italy, Economic Research and International Relations Area.
    17. Aleksandar Mijatovi'c & Martijn Pistorius, 2009. "Exotic derivatives under stochastic volatility models with jumps," Papers 0912.2595, arXiv.org, revised Oct 2010.
    18. Alexey MEDVEDEV & Olivier SCAILLET, 2004. "A Simple Calibration Procedure of Stochastic Volatility Models with Jumps by Short Term Asymptotics," FAME Research Paper Series rp93, International Center for Financial Asset Management and Engineering.
    19. Ali Hirsa & Tugce Karatas & Amir Oskoui, 2019. "Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes," Papers 1902.05810, arXiv.org.
    20. Bjørn Eraker & Ivan Shaliastovich, 2008. "An Equilibrium Guide To Designing Affine Pricing Models," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 519-543, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:167:y:2024:i:c:s0304414923002004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.