IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v102y2017icp197-209.html
   My bibliography  Save this article

Fractional derivatives on cosmic scales

Author

Listed:
  • Uchaikin, V.V.
  • Sibatov, R.T.

Abstract

Almost since the very discovery of cosmic rays, calculations of their propagation in the Galaxy have been based on the use of the local diffusion model. It is quite acceptable for modeling of the Brownian motion because displacements of the Brownian tracer are mutually independent in length and direction. However, some features of this model are incompatible with the real behavior of cosmic rays: the path of the tracer between any two points of its trajectory is infinite, the local velocity is infinite and the front from a local pulse source is absent (after a moment, the particle can be observed arbitrarily far away from its original place). In this article, we describe the current state of a new model of cosmic ray transport, being free from these imperfections. It was formulated in 2010 and is still in progress under the title NoRD (Nonlocal Relativistic Diffusion) model. Two crucial ideas underlie this approach: taking into account correlations in space-time increments and using the material derivative of a fractional order. First of them ensures the relativistic speed-limitation whereas the second one reflects the influence of interstellar medium turbulence. The numerical calculation results demonstrated in this paper do speak well for the NoRD-model as compared with the traditional one based on integer-order operators.

Suggested Citation

  • Uchaikin, V.V. & Sibatov, R.T., 2017. "Fractional derivatives on cosmic scales," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 197-209.
  • Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:197-209
    DOI: 10.1016/j.chaos.2017.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uchaikin, Vladimir V., 1998. "Anomalous transport equations and their application to fractal walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 255(1), pages 65-92.
    2. Krepysheva, Natalia & Di Pietro, Liliana & Néel, Marie-Christine, 2006. "Fractional diffusion and reflective boundary condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 355-361.
    3. Alvaro Cartea & Diego del-Castillo-Negrete, 2007. "On the Fluid Limit of the Continuous-Time Random Walk with General Lévy Jump Distribution Functions," Birkbeck Working Papers in Economics and Finance 0708, Birkbeck, Department of Economics, Mathematics & Statistics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viacheslav V. Saenko & Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Ekaterina V. Tsvetova, 2022. "Numerical Method for Solving of the Anomalous Diffusion Equation Based on a Local Estimate of the Monte Carlo Method," Mathematics, MDPI, vol. 10(3), pages 1-19, February.
    2. Tajani, Asmae & El Alaoui, Fatima-Zahrae & Boutoulout, Ali, 2022. "Regional boundary controllability of semilinear subdiffusion Caputo fractional systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 481-496.
    3. Feng, Libo & Liu, Fawang & Anh, Vo V., 2023. "Galerkin finite element method for a two-dimensional tempered time–space fractional diffusion equation with application to a Bloch–Torrey equation retaining Larmor precession," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 517-537.
    4. Farzad Sabzikar & Qiying Wang & Peter C.B. Phillips, 2018. "Asymptotic Theory for Near Integrated Process Driven by Tempered Linear Process," Cowles Foundation Discussion Papers 2131, Cowles Foundation for Research in Economics, Yale University.
    5. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    6. Viacheslav V. Saenko & Vladislav N. Kovalnogov & Ruslan V. Fedorov & Yuri E. Chamchiyan, 2021. "Numerical Solution to Anomalous Diffusion Equations for Levy Walks," Mathematics, MDPI, vol. 9(24), pages 1-17, December.
    7. Álvaro Cartea, 2013. "Derivatives pricing with marked point processes using tick-by-tick data," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 111-123, January.
    8. Saenko, Viacheslav V., 2016. "The influence of the finite velocity on spatial distribution of particles in the frame of Levy walk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 765-782.
    9. Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.
    10. Weiyuan Ma & Changpin Li & Jingwei Deng, 2019. "Synchronization in Tempered Fractional Complex Networks via Auxiliary System Approach," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    11. Du, Yuru & Meng, Lin & Lin, Lifeng & Wang, Huiqi, 2024. "Resonant behaviors of two coupled fluctuating-frequency oscillators with tempered Mittag-Leffler memory kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    12. D’Ovidio, Mirko & Iafrate, Francesco, 2024. "Elastic drifted Brownian motions and non-local boundary conditions," Stochastic Processes and their Applications, Elsevier, vol. 167(C).
    13. Zhang, Yuxin & Li, Qian & Ding, Hengfei, 2018. "High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I)," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 432-443.
    14. Luo, Wei-Hua & Gu, Xian-Ming & Yang, Liu & Meng, Jing, 2021. "A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 1-24.
    15. Marseguerra, M. & Zoia, A., 2007. "Some insights in superdiffusive transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 1-14.
    16. Rukolaine, Sergey A., 2016. "Generalized linear Boltzmann equation, describing non-classical particle transport, and related asymptotic solutions for small mean free paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 205-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:197-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.