IDEAS home Printed from https://ideas.repec.org/p/bbk/bbkefp/0708.html
   My bibliography  Save this paper

On the Fluid Limit of the Continuous-Time Random Walk with General Lévy Jump Distribution Functions

Author

Listed:
  • Alvaro Cartea

    (Department of Economics, Mathematics & Statistics, Birkbeck)

  • Diego del-Castillo-Negrete

Abstract

No abstract is available for this item.

Suggested Citation

  • Alvaro Cartea & Diego del-Castillo-Negrete, 2007. "On the Fluid Limit of the Continuous-Time Random Walk with General Lévy Jump Distribution Functions," Birkbeck Working Papers in Economics and Finance 0708, Birkbeck, Department of Economics, Mathematics & Statistics.
  • Handle: RePEc:bbk:bbkefp:0708
    as

    Download full text from publisher

    File URL: https://eprints.bbk.ac.uk/id/eprint/26910
    File Function: First version, 2007
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Yuru & Meng, Lin & Lin, Lifeng & Wang, Huiqi, 2024. "Resonant behaviors of two coupled fluctuating-frequency oscillators with tempered Mittag-Leffler memory kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    2. Tajani, Asmae & El Alaoui, Fatima-Zahrae & Boutoulout, Ali, 2022. "Regional boundary controllability of semilinear subdiffusion Caputo fractional systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 481-496.
    3. Feng, Libo & Liu, Fawang & Anh, Vo V., 2023. "Galerkin finite element method for a two-dimensional tempered time–space fractional diffusion equation with application to a Bloch–Torrey equation retaining Larmor precession," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 517-537.
    4. Luo, Wei-Hua & Gu, Xian-Ming & Yang, Liu & Meng, Jing, 2021. "A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 1-24.
    5. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    6. Zhang, Yuxin & Li, Qian & Ding, Hengfei, 2018. "High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I)," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 432-443.
    7. Álvaro Cartea, 2013. "Derivatives pricing with marked point processes using tick-by-tick data," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 111-123, January.
    8. Uchaikin, V.V. & Sibatov, R.T., 2017. "Fractional derivatives on cosmic scales," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 197-209.
    9. Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.
    10. D’Ovidio, Mirko & Iafrate, Francesco, 2024. "Elastic drifted Brownian motions and non-local boundary conditions," Stochastic Processes and their Applications, Elsevier, vol. 167(C).
    11. Weiyuan Ma & Changpin Li & Jingwei Deng, 2019. "Synchronization in Tempered Fractional Complex Networks via Auxiliary System Approach," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    12. Farzad Sabzikar & Qiying Wang & Peter C.B. Phillips, 2018. "Asymptotic Theory for Near Integrated Process Driven by Tempered Linear Process," Cowles Foundation Discussion Papers 2131, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bbk:bbkefp:0708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.bbk.ac.uk/departments/ems/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.