IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v206y2023icp302-374.html
   My bibliography  Save this article

Local search enhanced Aquila optimization algorithm ameliorated with an ensemble of Wavelet mutation strategies for complex optimization problems

Author

Listed:
  • Turgut, Oguz Emrah
  • Turgut, Mert Sinan

Abstract

Aquila Optimization Algorithm (AQUILA) is a newly emerged metaheuristic optimizer for solving global optimization problems, which is based on intrinsic hunting behaviors of the foraging aquila individuals. However, this stochastic optimization method suffers from some algorithm-specific drawbacks, such as premature convergence to the local optimum points over the search hyperspace due to the lack of solution diversity in the population. To conquer this algorithmic deficiency, an ensemble of Wavelet mutation operators has been implemented into the standard AQUILA to enhance the explorative capabilities of the algorithm by diversifying the search domain as much as possible. Furthermore, a brand-new local search scheme empowered by the synergetic interactions of elite opposition-based learning and a simple-yet-effective exploitative manipulation equation is introduced into the base AQUILA to intensify on the previously visited promising regions. The proposed learning schemes are stochastically applied to the obtained solutions from the base Aquila algorithm to refine the overall solution quality and amend the premature convergence problem. It is also aimed to investigate whether the collective application of Wavelet mutation operators with different types entails a significant improvement in the general search effectivity of the algorithm rather than their individual efforts. Numerical experiments made on a suite of unconstrained unimodal and multimodal benchmark functions reveal that this hybridization with AQUILA has improved the general solution accuracy and stability to very high standards, outperforming its contemporary counterparts in the comparative statistical analysis. Furthermore, an exhaustive benchmark analysis has been performed on fourteen constrained real-world complex engineering problems.

Suggested Citation

  • Turgut, Oguz Emrah & Turgut, Mert Sinan, 2023. "Local search enhanced Aquila optimization algorithm ameliorated with an ensemble of Wavelet mutation strategies for complex optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 302-374.
  • Handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:302-374
    DOI: 10.1016/j.matcom.2022.11.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422004694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.11.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamal Z Zamli & Fakhrud Din & Bestoun S Ahmed & Miroslav Bures, 2018. "A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-29, May.
    2. Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
    3. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Ahmad H. Milyani, 2022. "Design of Aquila Optimization Heuristic for Identification of Control Autoregressive Systems," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    4. Sangeeta Mondal & Sakti Prasad Ghoshal & Rajib Kar & Durbadal Mandal, 2012. "Differential Evolution with Wavelet Mutation in Digital Finite Impulse Response Filter Design," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 315-324, October.
    5. Chiwen Qu & Shi’an Zhao & Yanming Fu & Wei He, 2017. "Chicken Swarm Optimization Based on Elite Opposition-Based Learning," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-20, March.
    6. Hu, Gang & Du, Bo & Li, Huinan & Wang, Xupeng, 2022. "Quadratic interpolation boosted black widow spider-inspired optimization algorithm with wavelet mutation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 428-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Taimoor Ali & Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Mehmood, Khizer & Hsu, Chung-Chian & Raja, Muhammad Asif Zahoor, 2024. "Design of Runge-Kutta optimization for fractional input nonlinear autoregressive exogenous system identification with key-term separation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Essam H. Houssein & Awny Sayed, 2023. "Dynamic Candidate Solution Boosted Beluga Whale Optimization Algorithm for Biomedical Classification," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    2. Zhang, Ziyuan & Wang, Jianzhou & Wei, Danxiang & Luo, Tianrui & Xia, Yurui, 2023. "A novel ensemble system for short-term wind speed forecasting based on Two-stage Attention-Based Recurrent Neural Network," Renewable Energy, Elsevier, vol. 204(C), pages 11-23.
    3. Jian Zhao & Bochen Zhang & Xiwang Guo & Liang Qi & Zhiwu Li, 2022. "Self-Adapting Spherical Search Algorithm with Differential Evolution for Global Optimization," Mathematics, MDPI, vol. 10(23), pages 1-31, November.
    4. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Abdul Hai Alami & Enas Taha Sayed, 2023. "Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    5. Fatmah Y. Assiri & Mahmoud Ragab, 2023. "Optimal Deep-Learning-Based Cyberattack Detection in a Blockchain-Assisted IoT Environment," Mathematics, MDPI, vol. 11(19), pages 1-16, September.
    6. Eslami, N. & Yazdani, S. & Mirzaei, M. & Hadavandi, E., 2022. "Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 362-395.
    7. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    8. Hu, Gang & Yang, Rui & Wei, Guo, 2023. "Hybrid chameleon swarm algorithm with multi-strategy: A case study of degree reduction for disk Wang–Ball curves," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 709-769.
    9. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.
    10. Yan, Zheping & Zhang, Jinzhong & Tang, Jialing, 2021. "Path planning for autonomous underwater vehicle based on an enhanced water wave optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 192-241.
    11. Muhammad Haris Khan & Abasin Ulasyar & Abraiz Khattak & Haris Sheh Zad & Mohammad Alsharef & Ahmad Aziz Alahmadi & Nasim Ullah, 2022. "Optimal Sizing and Allocation of Distributed Generation in the Radial Power Distribution System Using Honey Badger Algorithm," Energies, MDPI, vol. 15(16), pages 1-18, August.
    12. Chenyang Gao & Teng Li & Yuelin Gao & Ziyu Zhang, 2024. "A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems," Mathematics, MDPI, vol. 12(3), pages 1-35, January.
    13. Chao Zhou & Bing Gao & Haiyue Yang & Xudong Zhang & Jiaqi Liu & Lingling Li, 2022. "Junction Temperature Prediction of Insulated-Gate Bipolar Transistors in Wind Power Systems Based on an Improved Honey Badger Algorithm," Energies, MDPI, vol. 15(19), pages 1-19, October.
    14. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    15. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    16. Zhang, Zhonglian & Yang, Xiaohui & Yang, Li & Wang, Zhaojun & Huang, Zezhong & Wang, Xiaopeng & Mei, Linghao, 2023. "Optimal configuration of double carbon energy system considering climate change," Energy, Elsevier, vol. 283(C).
    17. Ghareeb Moustafa & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Hany S. E. Mansour, 2023. "A Gradient-Based Optimizer with a Crossover Operator for Distribution Static VAR Compensator (D-SVC) Sizing and Placement in Electrical Systems," Mathematics, MDPI, vol. 11(5), pages 1-30, February.
    18. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    19. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    20. Kaveh, Mehrdad & Mesgari, Mohammad Saadi & Saeidian, Bahram, 2023. "Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 95-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:302-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.