IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v190y2021icp343-361.html
   My bibliography  Save this article

Second Chebyshev wavelets (SCWs) method for solving finite-time fractional linear quadratic optimal control problems

Author

Listed:
  • Baghani, Omid

Abstract

In this paper, we present an indirect computational procedure based on the truncated second kind Chebyshev wavelets for finding the solutions of Caputo fractional time-invariant linear optimal control systems which the functional cost consists of the finite-time quadratic cost function. Utilizing the operational matrices of second Chebyshev wavelets (SCWs) of the Riemann–Liouville fractional integral, the corresponding linear two-point boundary value problem (TPBVP), obtained from the fractional Euler–Lagrange equations, is reduced to a coupled Sylvester-type matrix equation. An equivalent linear matrix form using the Kronecker product is constructed. The upper bound of the error of the SCWs approximation and the convergence of the proposed method are investigated. Low computational complexity and flexible accuracy are two important superiorities of this approach. Numerical experiments provide satisfactory results compared to the exiting techniques.

Suggested Citation

  • Baghani, Omid, 2021. "Second Chebyshev wavelets (SCWs) method for solving finite-time fractional linear quadratic optimal control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 343-361.
  • Handle: RePEc:eee:matcom:v:190:y:2021:i:c:p:343-361
    DOI: 10.1016/j.matcom.2021.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421001841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yanxin & Zhu, Li, 2016. "SCW method for solving the fractional integro-differential equations with a weakly singular kernel," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 72-80.
    2. H. Saberi Nik & Sohrab Effati & Sandile S. Motsa & Stanford Shateyi, 2013. "A New Piecewise-Spectral Homotopy Analysis Method for Solving Chaotic Systems of Initial Value Problems," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-13, April.
    3. Zhu, Li & Wang, Yanxin, 2015. "Numerical solutions of Volterra integral equation with weakly singular kernel using SCW method," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 63-70.
    4. Heydari, M.H. & Hooshmandasl, M.R. & Maalek Ghaini, F.M. & Cattani, C., 2016. "Wavelets method for solving fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baghani, Omid, 2022. "SCW-iterative-computational method for solving a wide class of nonlinear fractional optimal control problems with Caputo derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 540-558.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayazi, N. & Mokhtary, P. & Moghaddam, B. Parsa, 2024. "Efficiently solving fractional delay differential equations of variable order via an adjusted spectral element approach," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Baghani, Omid, 2022. "SCW-iterative-computational method for solving a wide class of nonlinear fractional optimal control problems with Caputo derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 540-558.
    3. Heydari, M.H. & Avazzadeh, Z. & Mahmoudi, M.R., 2019. "Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 105-124.
    4. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.
    5. Wang, Yanxin & Zhu, Li, 2016. "SCW method for solving the fractional integro-differential equations with a weakly singular kernel," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 72-80.
    6. Ashpazzadeh, Elmira & Chu, Yu-Ming & Hashemi, Mir Sajjad & Moharrami, Mahsa & Inc, Mustafa, 2022. "Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    7. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Haromi, Malih Farzi, 2019. "A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 215-228.
    8. Tirumalasetty Chiranjeevi & Raj Kumar Biswas, 2017. "Discrete-Time Fractional Optimal Control," Mathematics, MDPI, vol. 5(2), pages 1-12, April.
    9. Araz Noori Dalawi & Mehrdad Lakestani & Elmira Ashpazzadeh, 2022. "An Efficient Algorithm for the Multi-Scale Solution of Nonlinear Fractional Optimal Control Problems," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
    10. Ghanbari, Behzad & Atangana, Abdon, 2020. "A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    11. Hassani, Hossein & Avazzadeh, Zakieh, 2019. "Transcendental Bernstein series for solving nonlinear variable order fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    12. Luo, Ziyang & Zhang, Xingdong & Wang, Shuo & Yao, Lin, 2022. "Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    13. Fakhrodin Mohammadi & Hossein Hassani, 2019. "Numerical Solution of Two-Dimensional Variable-Order Fractional Optimal Control Problem by Generalized Polynomial Basis," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 536-555, February.
    14. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    15. Nemati, S. & Lima, P.M., 2018. "Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 79-92.
    16. Sowa, Marcin, 2018. "Application of SubIval in solving initial value problems with fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 86-103.
    17. Heydari, M.H., 2020. "Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    18. Habibirad, Ali & Azin, Hadis & Hesameddini, Esmail, 2023. "A capable numerical meshless scheme for solving distributed order time-fractional reaction–diffusion equation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    19. Heydari, M.H. & Razzaghi, M., 2021. "Piecewise Chebyshev cardinal functions: Application for constrained fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:190:y:2021:i:c:p:343-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.