IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v275y2016icp72-80.html
   My bibliography  Save this article

SCW method for solving the fractional integro-differential equations with a weakly singular kernel

Author

Listed:
  • Wang, Yanxin
  • Zhu, Li

Abstract

In this paper, based on the second Chebyshev wavelets (SCW) operational matrix of fractional order integration, a numerical method for solving a class of fractional integro-differential equations with a weakly singular kernel is proposed. By using the operational matrix, the fractional integro-differential equations with weakly singular kernel are transformed into a system of algebraic equations. The upper bound of the error of the second Chebyshev wavelets expansion is investigated. Finally, some numerical examples are shown to illustrate the efficiency and accuracy of the approach.

Suggested Citation

  • Wang, Yanxin & Zhu, Li, 2016. "SCW method for solving the fractional integro-differential equations with a weakly singular kernel," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 72-80.
  • Handle: RePEc:eee:apmaco:v:275:y:2016:i:c:p:72-80
    DOI: 10.1016/j.amc.2015.11.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315015593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.11.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Li & Wang, Yanxin, 2015. "Numerical solutions of Volterra integral equation with weakly singular kernel using SCW method," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 63-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nemati, S. & Lima, P.M., 2018. "Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 79-92.
    2. Luo, Ziyang & Zhang, Xingdong & Wang, Shuo & Yao, Lin, 2022. "Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Sowa, Marcin, 2018. "Application of SubIval in solving initial value problems with fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 86-103.
    4. Baghani, Omid, 2021. "Second Chebyshev wavelets (SCWs) method for solving finite-time fractional linear quadratic optimal control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 343-361.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashpazzadeh, Elmira & Chu, Yu-Ming & Hashemi, Mir Sajjad & Moharrami, Mahsa & Inc, Mustafa, 2022. "Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    2. Baghani, Omid, 2021. "Second Chebyshev wavelets (SCWs) method for solving finite-time fractional linear quadratic optimal control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 343-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:275:y:2016:i:c:p:72-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.