IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v319y2018icp86-103.html
   My bibliography  Save this article

Application of SubIval in solving initial value problems with fractional derivatives

Author

Listed:
  • Sowa, Marcin

Abstract

The application of a numerical method for the approximation of the fractional derivative (in Riemann–Liouville and Caputo definitions) in initial value problems is discussed. The method (previously known as the subinterval-based method) is now referred to by its acronym, SubIval, for simpler future references.

Suggested Citation

  • Sowa, Marcin, 2018. "Application of SubIval in solving initial value problems with fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 86-103.
  • Handle: RePEc:eee:apmaco:v:319:y:2018:i:c:p:86-103
    DOI: 10.1016/j.amc.2017.01.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317300656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.01.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katugampola, Udita N., 2015. "Mellin transforms of generalized fractional integrals and derivatives," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 566-580.
    2. Garrappa, Roberto, 2015. "Trapezoidal methods for fractional differential equations: Theoretical and computational aspects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 110(C), pages 96-112.
    3. Sierociuk, Dominik & Skovranek, Tomas & Macias, Michal & Podlubny, Igor & Petras, Ivo & Dzielinski, Andrzej & Ziubinski, Pawel, 2015. "Diffusion process modeling by using fractional-order models," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 2-11.
    4. Saeed, Umer & ur Rehman, Mujeeb, 2015. "Haar wavelet Picard method for fractional nonlinear partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 310-322.
    5. Luo, Wei-Hua & Huang, Ting-Zhu & Wu, Guo-Cheng & Gu, Xian-Ming, 2016. "Quadratic spline collocation method for the time fractional subdiffusion equation," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 252-265.
    6. Pirkhedri, A. & Javadi, H.H.S., 2015. "Solving the time-fractional diffusion equation via Sinc–Haar collocation method," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 317-326.
    7. Yang, Xiao-Jun & Tenreiro Machado, J.A. & Srivastava, H.M., 2016. "A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 143-151.
    8. Wang, Yanxin & Zhu, Li, 2016. "SCW method for solving the fractional integro-differential equations with a weakly singular kernel," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 72-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agarwal, Ritu & Kritika, & Purohit, Sunil Dutt, 2021. "Mathematical model pertaining to the effect of buffer over cytosolic calcium concentration distribution," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Ertuğrul Karaçuha & Vasil Tabatadze & Kamil Karaçuha & Nisa Özge Önal & Esra Ergün, 2020. "Deep Assessment Methodology Using Fractional Calculus on Mathematical Modeling and Prediction of Gross Domestic Product per Capita of Countries," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    3. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    4. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    5. Zeng, Shengda & Baleanu, Dumitru & Bai, Yunru & Wu, Guocheng, 2017. "Fractional differential equations of Caputo–Katugampola type and numerical solutions," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 549-554.
    6. H. Çerdik Yaslan, 2021. "Numerical solution of the nonlinear conformable space–time fractional partial differential equations," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 407-419, June.
    7. Arenas, Abraham J. & González-Parra, Gilberto & Chen-Charpentier, Benito M., 2016. "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 48-63.
    8. Das, Saptarshi & Pan, Indranil & Das, Shantanu, 2016. "Effect of random parameter switching on commensurate fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 157-173.
    9. Iyiola, O.S. & Tasbozan, O. & Kurt, A. & Çenesiz, Y., 2017. "On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 1-7.
    10. Dmytro Sytnyk & Barbara Wohlmuth, 2023. "Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    11. Xie, Jiaquan & Wang, Tao & Ren, Zhongkai & Zhang, Jun & Quan, Long, 2019. "Haar wavelet method for approximating the solution of a coupled system of fractional-order integral–differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 80-89.
    12. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    13. Zhang, Shuo & Liu, Lu & Xue, Dingyu, 2020. "Nyquist-based stability analysis of non-commensurate fractional-order delay systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    14. Wang, Yuan-Ming & Xie, Bo, 2023. "A fourth-order fractional Adams-type implicit–explicit method for nonlinear fractional ordinary differential equations with weakly singular solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 21-48.
    15. repec:taf:tsysxx:v:48:y:2017:i:7:p:1460-1471 is not listed on IDEAS
    16. Rainey Lyons & Aghalaya S. Vatsala & Ross A. Chiquet, 2017. "Picard’s Iterative Method for Caputo Fractional Differential Equations with Numerical Results," Mathematics, MDPI, vol. 5(4), pages 1-9, November.
    17. Yang, Changqing, 2023. "Improved spectral deferred correction methods for fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    18. Jannelli, Alessandra, 2024. "A finite difference method on quasi-uniform grids for the fractional boundary-layer Blasius flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 382-398.
    19. Luo, Ziyang & Zhang, Xingdong & Wang, Shuo & Yao, Lin, 2022. "Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    20. Kashfi Sadabad, Mahnaz & Jodayree Akbarfam, Aliasghar, 2021. "An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm–Liouville problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 547-569.
    21. Krzysztof Oprzędkiewicz & Wojciech Mitkowski & Maciej Rosół, 2021. "Fractional Order Model of the Two Dimensional Heat Transfer Process," Energies, MDPI, vol. 14(19), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:319:y:2018:i:c:p:86-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.