IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v327y2018icp79-92.html
   My bibliography  Save this article

Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions

Author

Listed:
  • Nemati, S.
  • Lima, P.M.

Abstract

In the present paper, a modification of hat functions (MHFs) has been considered for solving a class of nonlinear fractional integro-differential equations with weakly singular kernels, numerically. The fractional order operational matrix of integration is introduced. We provide an error estimation for the approximation of a function by a series of MHFs. To suggest a numerical method, the main problem is converted to an equivalent Volterra integral equation of the second kind and operational matrices of MHFs are used to reduce the problem to the solution of bivariate polynomial equations. Finally, illustrative examples are provided to confirm the accuracy and validity of the proposed method.

Suggested Citation

  • Nemati, S. & Lima, P.M., 2018. "Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 79-92.
  • Handle: RePEc:eee:apmaco:v:327:y:2018:i:c:p:79-92
    DOI: 10.1016/j.amc.2018.01.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318300511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.01.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arikoglu, Aytac & Ozkol, Ibrahim, 2007. "Solution of fractional differential equations by using differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1473-1481.
    2. Mirzaee, Farshid & Hadadiyan, Elham, 2016. "Numerical solution of Volterra–Fredholm integral equations via modification of hat functions," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 110-123.
    3. Wang, Yanxin & Zhu, Li, 2016. "SCW method for solving the fractional integro-differential equations with a weakly singular kernel," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 72-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atangana, Abdon & Araz, Seda İğret, 2019. "Analysis of a new partial integro-differential equation with mixed fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 257-271.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moghaddam, B.P. & Machado, J.A.T. & Behforooz, H., 2017. "An integro quadratic spline approach for a class of variable-order fractional initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 354-360.
    2. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    3. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Heydari, M.H. & Hooshmandasl, M.R. & Maalek Ghaini, F.M. & Cattani, C., 2016. "Wavelets method for solving fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 139-154.
    5. Alam, M. Shamsul & Huq, M. Ashraful & Hasan, M. Kamrul & Rahman, M. Saifur, 2021. "A new technique for solving a class of strongly nonlinear oscillatory equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Raja, Muhammad Asif Zahoor & Samar, Raza & Manzar, Muhammad Anwar & Shah, Syed Muslim, 2017. "Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 139-158.
    7. Damarla, Seshu Kumar & Kundu, Madhusree, 2015. "Numerical solution of multi-order fractional differential equations using generalized triangular function operational matrices," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 189-203.
    8. İbrahim Avcı & Nazim I. Mahmudov, 2020. "Numerical Solutions for Multi-Term Fractional Order Differential Equations with Fractional Taylor Operational Matrix of Fractional Integration," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    9. Rehman, Mujeeb ur & Idrees, Amna & Saeed, Umer, 2017. "A quadrature method for numerical solutions of fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 38-49.
    10. Luo, Ziyang & Zhang, Xingdong & Wang, Shuo & Yao, Lin, 2022. "Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Salah Abuasad & Ahmet Yildirim & Ishak Hashim & Samsul Ariffin Abdul Karim & J.F. Gómez-Aguilar, 2019. "Fractional Multi-Step Differential Transformed Method for Approximating a Fractional Stochastic SIS Epidemic Model with Imperfect Vaccination," IJERPH, MDPI, vol. 16(6), pages 1-15, March.
    12. Skwara, Urszula & Mozyrska, Dorota & Aguiar, Maira & Stollenwerk, Nico, 2024. "Dynamics of vector-borne diseases through the lens of systems incorporating fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Khudair, Ayad R. & Haddad, S.A.M. & khalaf, Sanaa L., 2017. "Restricted fractional differential transform for solving irrational order fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 81-85.
    14. Yang, Xiao-Jun & Tenreiro Machado, J.A. & Srivastava, H.M., 2016. "A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 143-151.
    15. Sowa, Marcin, 2018. "Application of SubIval in solving initial value problems with fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 86-103.
    16. Kumar, Manoj & Daftardar-Gejji, Varsha, 2019. "A new family of predictor-corrector methods for solving fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    17. Kavyanpoor, Mobin & Shokrollahi, Saeed, 2017. "Challenge on solutions of fractional Van Der Pol oscillator by using the differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 44-45.
    18. Amiri, Sadegh & Hajipour, Mojtaba & Baleanu, Dumitru, 2020. "A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra–Fredholm integral equations," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    19. Arikoglu, Aytac & Ozkol, Ibrahim, 2009. "Solution of fractional integro-differential equations by using fractional differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 521-529.
    20. Allahviranloo, T. & Gouyandeh, Z. & Armand, A., 2015. "Numerical solutions for fractional differential equations by Tau-Collocation method," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 979-990.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:327:y:2018:i:c:p:79-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.