IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v505y2018icp94-104.html
   My bibliography  Save this article

Asymptotic behavior of a food-limited Lotka–Volterra mutualism model with Markovian switching and Lévy jumps

Author

Listed:
  • Liu, Qun
  • Jiang, Daqing
  • Hayat, Tasawar
  • Alsaedi, Ahmed

Abstract

In this paper, we investigate a food-limited Lotka–Volterra mutualism model with Markovian switching and Lévy jumps. We present the analysis and the criteria of the asymptotic behavior for this perturbed model via Lyapunov functions. Our results show that both colored noise and Lévy noise have important effects on the survival and extinction of the species.

Suggested Citation

  • Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Asymptotic behavior of a food-limited Lotka–Volterra mutualism model with Markovian switching and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 94-104.
  • Handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:94-104
    DOI: 10.1016/j.physa.2018.03.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711830390X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.03.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xinhong & Jiang, Daqing & Alsaedi, Ahmed & Hayat, Tasawar, 2016. "Periodic solutions and stationary distribution of mutualism models in random environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 270-282.
    2. Liu, Qun, 2015. "Analysis of a stochastic non-autonomous food-limited Lotka–Volterra cooperative model," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 1-8.
    3. Liu, Meng & Bai, Chuanzhi, 2015. "A remark on a stochastic logistic model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 521-526.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Chun, 2021. "Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 316-332.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chunmei & Shi, Lin, 2021. "Graph-theoretic method on the periodicity of coupled predator–prey systems with infinite delays on a dispersal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    2. Zhang, Xiaofeng & Yuan, Rong, 2022. "Stochastic bifurcation and density function analysis of a stochastic logistic equation with distributed delay and weak kernel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 195(C), pages 56-70.
    3. Liu, Yan & Mei, Jingling & Li, Wenxue, 2018. "Stochastic stabilization problem of complex networks without strong connectedness," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 304-315.
    4. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamical behavior of a stochastic SVIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 94-108.
    5. Wang, Hui & Pan, Fangmei & Liu, Meng, 2019. "Survival analysis of a stochastic service–resource mutualism model in a polluted environment with pulse toxicant input," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 591-606.
    6. Feng, Jiqiang & Xu, Chen, 2020. "The existence of a stationary distribution for stochastic coupled oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Almaz T. Abebe & Shenglan Yuan & Daniel Tesfay & James Brannan, 2024. "Most Probable Dynamics of the Single-Species with Allee Effect under Jump-Diffusion Noise," Mathematics, MDPI, vol. 12(9), pages 1-18, April.
    8. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 289-304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:94-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.