IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip2s0960077922010505.html
   My bibliography  Save this article

Support vector regression for the temperature-stimulated drug release

Author

Listed:
  • Ahadian, P.
  • Parand, K.

Abstract

This paper presents a new coupled nonlinear convection–diffusion–reaction model for the temperature-stimulated drug release and a numerical algorithm based on a machine learning technique. By incorporating the fractional derivatives into the model, we take advantage of anomalous diffusion in biological tissues. In the proposed technique a least-squares support vector regression is developed for the numerical simulation of the problem. The Bernstein polynomials are used as the kernel function and some training points are considered for the residual system of the coupled problem in an inverse process. Some numerical experiments are carried out to support the method and its spectral convergence.

Suggested Citation

  • Ahadian, P. & Parand, K., 2022. "Support vector regression for the temperature-stimulated drug release," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010505
    DOI: 10.1016/j.chaos.2022.112871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922010505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
    2. Pakniyat, A. & Parand, K. & Jani, M., 2021. "Least squares support vector regression for differential equations on unbounded domains," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Mehrban & Pegah Ahadian, 2024. "An adaptive network-based approach for advanced forecasting of cryptocurrency values," Papers 2401.05441, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbaszadeh, Mostafa & Zaky, Mahmoud A. & Hendy, Ahmed S. & Dehghan, Mehdi, 2024. "Supervised learning and meshless methods for two-dimensional fractional PDEs on irregular domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 77-103.
    2. Hajimohammadi, Zeinab & Parand, Kourosh, 2021. "Numerical learning approximation of time-fractional sub diffusion model on a semi-infinite domain," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Rahimkhani, P. & Ordokhani, Y., 2022. "Chelyshkov least squares support vector regression for nonlinear stochastic differential equations by variable fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    4. Bhaumik, Bivas & De, Soumen & Changdar, Satyasaran, 2024. "Deep learning based solution of nonlinear partial differential equations arising in the process of arterial blood flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 21-36.
    5. Pakniyat, A. & Parand, K. & Jani, M., 2021. "Least squares support vector regression for differential equations on unbounded domains," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Sun, Hongli & Lu, Yanfei, 2024. "A novel approach for solving linear Fredholm integro-differential equations via LS-SVM algorithm," Applied Mathematics and Computation, Elsevier, vol. 470(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.