Support vector regression for the temperature-stimulated drug release
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2022.112871
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pakniyat, A. & Parand, K. & Jani, M., 2021. "Least squares support vector regression for differential equations on unbounded domains," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ali Mehrban & Pegah Ahadian, 2024. "An adaptive network-based approach for advanced forecasting of cryptocurrency values," Papers 2401.05441, arXiv.org, revised Feb 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abbaszadeh, Mostafa & Zaky, Mahmoud A. & Hendy, Ahmed S. & Dehghan, Mehdi, 2024. "Supervised learning and meshless methods for two-dimensional fractional PDEs on irregular domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 77-103.
- Hajimohammadi, Zeinab & Parand, Kourosh, 2021. "Numerical learning approximation of time-fractional sub diffusion model on a semi-infinite domain," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Rahimkhani, P. & Ordokhani, Y., 2022. "Chelyshkov least squares support vector regression for nonlinear stochastic differential equations by variable fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
- Bhaumik, Bivas & De, Soumen & Changdar, Satyasaran, 2024. "Deep learning based solution of nonlinear partial differential equations arising in the process of arterial blood flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 21-36.
- Pakniyat, A. & Parand, K. & Jani, M., 2021. "Least squares support vector regression for differential equations on unbounded domains," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Sun, Hongli & Lu, Yanfei, 2024. "A novel approach for solving linear Fredholm integro-differential equations via LS-SVM algorithm," Applied Mathematics and Computation, Elsevier, vol. 470(C).
More about this item
Keywords
Temperate-stimulated drug release; Collocation LS-SVR; Bernstein Kernel; Fractional PDEs; Nonlinear dynamics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010505. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.