IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v276y2016icp1-11.html
   My bibliography  Save this article

Two cubic spline methods for solving Fredholm integral equations

Author

Listed:
  • Bellour, A.
  • Sbibih, D.
  • Zidna, A.

Abstract

In this work, we propose two methods based on the use of natural and quasi cubic spline interpolations for approximating the solution of the second kind Fredholm integral equations. Convergence analysis is established. Some numerical examples are given to show the validity of the presented methods.

Suggested Citation

  • Bellour, A. & Sbibih, D. & Zidna, A., 2016. "Two cubic spline methods for solving Fredholm integral equations," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 1-11.
  • Handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:1-11
    DOI: 10.1016/j.amc.2015.11.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031501557X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.11.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allouch, C. & Sablonnière, P., 2014. "Iteration methods for Fredholm integral equations of the second kind based on spline quasi-interpolants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 99(C), pages 19-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barrera, D. & El Mokhtari, F. & Ibáñez, M.J. & Sbibih, D., 2020. "A quasi-interpolation product integration based method for solving Love’s integral equation with a very small parameter," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 213-223.
    2. Sanda Micula, 2022. "A Collocation Method for Mixed Volterra–Fredholm Integral Equations of the Hammerstein Type," Mathematics, MDPI, vol. 10(17), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.