Deep learning based solution of nonlinear partial differential equations arising in the process of arterial blood flow
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2023.10.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Elhanafy, Ahmed & Guaily, Amr & Elsaid, Ahmed, 2019. "Numerical simulation of blood flow in abdominal aortic aneurysms: Effects of blood shear-thinning and viscoelastic properties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 55-71.
- Wu, Gang-Zhou & Fang, Yin & Kudryashov, Nikolay A. & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Prediction of optical solitons using an improved physics-informed neural network method with the conservation law constraint," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
- Karthiga, R. & Narasimhan, K. & Amirtharajan, Rengarajan, 2022. "Diagnosis of breast cancer for modern mammography using artificial intelligence," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 316-330.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nikolay A. Kudryashov, 2023. "Hamiltonians of the Generalized Nonlinear Schrödinger Equations," Mathematics, MDPI, vol. 11(10), pages 1-12, May.
- Gerasim Vladimirovich Krivovichev, 2021. "Comparison of Non-Newtonian Models of One-Dimensional Hemodynamics," Mathematics, MDPI, vol. 9(19), pages 1-16, October.
- Rahimkhani, P. & Ordokhani, Y., 2022. "Chelyshkov least squares support vector regression for nonlinear stochastic differential equations by variable fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
- Ahadian, P. & Parand, K., 2022. "Support vector regression for the temperature-stimulated drug release," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
- Krivovichev, Gerasim V., 2022. "Comparison of inviscid and viscid one-dimensional models of blood flow in arteries," Applied Mathematics and Computation, Elsevier, vol. 418(C).
- Fang, Yin & Bo, Wen-Bo & Wang, Ru-Ru & Wang, Yue-Yue & Dai, Chao-Qing, 2022. "Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
- Chen, Junchao & Song, Jin & Zhou, Zijian & Yan, Zhenya, 2023. "Data-driven localized waves and parameter discovery in the massive Thirring model via extended physics-informed neural networks with interface zones," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
- Pakniyat, A. & Parand, K. & Jani, M., 2021. "Least squares support vector regression for differential equations on unbounded domains," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Chen, Jing & Xiao, Min & Wu, Xiaoqun & Wang, Zhengxin & Cao, Jinde, 2022. "Spatiotemporal dynamics on a class of (n+1)-dimensional reaction–diffusion neural networks with discrete delays and a conical structure," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Sun, Hongli & Lu, Yanfei, 2024. "A novel approach for solving linear Fredholm integro-differential equations via LS-SVM algorithm," Applied Mathematics and Computation, Elsevier, vol. 470(C).
- Hajimohammadi, Zeinab & Parand, Kourosh, 2021. "Numerical learning approximation of time-fractional sub diffusion model on a semi-infinite domain," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
More about this item
Keywords
Deep learning; Physics informed neural network; Partial differential equation; Viscoelastic artery; Blood flow;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:217:y:2024:i:c:p:21-36. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.