IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v35y2014icp336-346.html
   My bibliography  Save this article

Review of energy efficient direct pump controlled cylinder electro-hydraulic technology

Author

Listed:
  • Quan, Zhongyi
  • Quan, Long
  • Zhang, Jinman

Abstract

Hydraulic cylinder is an indispensable linear actuator in high power applications like construction machinery. In order to reduce the energy consumption, the noise and the waste oil disposal pollution of the hydraulic cylinder control system, the most direct method is adopting the direct pump control technology which eliminates the throttle losses in the main power line. In such system, by changing the speed or the displacement of the pump, the pressure and volume flow will be matched with the need of loads. To date, research works in this field have been reported in many articles, but they are scattered and written in different languages. An overview which can summarize the latest development of this technology appears to be necessary. This paper provides a comprehensive review on this technology, aiming at clarifying recent advances and outlining potential challenges in the research and application of this technology. The review mainly covers three parts: system structure, control, and derived energy recovery system. Also the evolvement of the electro-hydraulic cylinder control system is introduced. The review indicates that attentions should be paid to the control and energy recovery plan of the direct pump controlled cylinder system, and to the newly proposed asymmetric pump controlled differential cylinder technology. It is envisaged that the information gathered in this paper will be a valuable one-stop source of information for researchers, as well as providing a direction for future research in this area.

Suggested Citation

  • Quan, Zhongyi & Quan, Long & Zhang, Jinman, 2014. "Review of energy efficient direct pump controlled cylinder electro-hydraulic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 336-346.
  • Handle: RePEc:eee:rensus:v:35:y:2014:i:c:p:336-346
    DOI: 10.1016/j.rser.2014.04.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114002639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.04.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Dahai & Li, Wei & Lin, Yonggang & Bao, Jingwei, 2012. "An overview of hydraulic systems in wave energy application in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4522-4526.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, He & Chen, Zhen & Huang, Jiahai, 2021. "Improvement of vibration frequency and energy efficiency in the uniaxial electro-hydraulic shaking tables for sinusoidal vibration waveform," Energy, Elsevier, vol. 218(C).
    2. Chen, Qihuai & Lin, Tianliang & Ren, Haoling & Fu, Shengjie, 2019. "Novel potential energy regeneration systems for hybrid hydraulic excavators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 130-145.
    3. Wu, Wei & Hu, Jibin & Yuan, Shihua & Di, Chongfeng, 2016. "A hydraulic hybrid propulsion method for automobiles with self-adaptive system," Energy, Elsevier, vol. 114(C), pages 683-692.
    4. Lin, Tianliang & Chen, Qiang & Ren, Haoling & Huang, Weiping & Chen, Qihuai & Fu, Shengjie, 2017. "Review of boom potential energy regeneration technology for hydraulic construction machinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 358-371.
    5. Jin, Rui & Li, Lei & Liang, Xiaoling & Zou, Xiang & Yang, Zeyuan & Ge, Shuzhi Sam & Huang, Haihong, 2024. "Energy-efficient design of the powertrain for mechanical-electro-hydraulic equipment via configuring multidimensional controllable variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    6. Mingkun Yang & Xianhang Liu & Guishan Yan & Chao Ai & Cong Yu, 2024. "Research on Variable Speed Variable Displacement Power Unit with High Efficiency and High Dynamic Optimized Matching," Energies, MDPI, vol. 17(13), pages 1-22, July.
    7. Xuefei Li & Chao Duan & Kun Bai & Zongwei Yao, 2021. "Operating Performance of Pure Electric Loaders with Different Types of Motors Based on Simulation Analysis," Energies, MDPI, vol. 14(3), pages 1-19, January.
    8. Damiano Padovani & Søren Ketelsen & Daniel Hagen & Lasse Schmidt, 2019. "A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability," Energies, MDPI, vol. 12(2), pages 1-21, January.
    9. Pugi, L. & Pagliai, M. & Nocentini, A. & Lutzemberger, G. & Pretto, A., 2017. "Design of a hydraulic servo-actuation fed by a regenerative braking system," Applied Energy, Elsevier, vol. 187(C), pages 96-115.
    10. Teemu Koitto & Heikki Kauranne & Olof Calonius & Tatiana Minav & Matti Pietola, 2019. "Experimental Study on Fast and Energy-Efficient Direct Driven Hydraulic Actuator Unit," Energies, MDPI, vol. 12(8), pages 1-17, April.
    11. Søren Ketelsen & Damiano Padovani & Torben O. Andersen & Morten Kjeld Ebbesen & Lasse Schmidt, 2019. "Classification and Review of Pump-Controlled Differential Cylinder Drives," Energies, MDPI, vol. 12(7), pages 1-27, April.
    12. Jun-hui Zhang & Gan Liu & Ruqi Ding & Kun Zhang & Min Pan & Shihao Liu, 2019. "3D Printing for Energy-Saving: Evidence from Hydraulic Manifolds Design," Energies, MDPI, vol. 12(13), pages 1-21, June.
    13. Xiangyang Li & Yiting Xi & Dunhui Xiao & Jiaxin Tao, 2021. "Valve Plate Structural Optimal Design and Flow Field Analysis for the Aviation Bidirectional Three-Port Piston Pump," Energies, MDPI, vol. 14(11), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    2. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    3. Yu, Tongshun & Shi, Hongda & Song, Wenfu, 2018. "Rotational characteristics and capture efficiency of a variable guide vane wave energy converter," Renewable Energy, Elsevier, vol. 122(C), pages 275-290.
    4. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Guedes Soares, C., 2017. "Analysis of electrical drive speed control limitations of a power take-off system for wave energy converters," Renewable Energy, Elsevier, vol. 113(C), pages 335-346.
    5. Zeng, Zheng & Zhao, Rongxiang & Yang, Huan & Tang, Shengqing, 2014. "Policies and demonstrations of micro-grids in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 701-718.
    6. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Soares, C. Guedes, 2016. "Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters," Renewable Energy, Elsevier, vol. 97(C), pages 769-783.
    7. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.
    8. Zhou, Yahui & Liu, Hengxu & Kong, Fankai & Wang, Xuerui & Jin, Yeqing & Sun, Chongfei & Chen, Hailong, 2024. "Research on the design and optimal control of the power take-off (PTO) system for underwater eel-type power generators," Applied Energy, Elsevier, vol. 372(C).
    9. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
    10. Yubo Niu & Xingyuan Gu & Xuhui Yue & Yang Zheng & Peijie He & Qijuan Chen, 2022. "Research on Thermodynamic Characteristics of Hydraulic Power Take-Off System in Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-15, February.
    11. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Soares, C. Guedes, 2018. "Design tradeoffs of an oil-hydraulic power take-off for wave energy converters," Renewable Energy, Elsevier, vol. 129(PA), pages 245-259.
    12. Shi, Hongda & Cao, Feifei & Liu, Zhen & Qu, Na, 2016. "Theoretical study on the power take-off estimation of heaving buoy wave energy converter," Renewable Energy, Elsevier, vol. 86(C), pages 441-448.
    13. Lin, Yonggang & Bao, Jingwei & Liu, Hongwei & Li, Wei & Tu, Le & Zhang, Dahai, 2015. "Review of hydraulic transmission technologies for wave power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 194-203.
    14. Zanous, Sina Pasha & Shafaghat, Rouzbeh & Alamian, Rezvan & Shadloo, Mostafa Safdari & Khosravi, Mohammad, 2019. "Feasibility study of wave energy harvesting along the southern coast and islands of Iran," Renewable Energy, Elsevier, vol. 135(C), pages 502-514.
    15. Damiano Padovani & Søren Ketelsen & Daniel Hagen & Lasse Schmidt, 2019. "A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability," Energies, MDPI, vol. 12(2), pages 1-21, January.
    16. Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    17. Calvário, M. & Gaspar, J.F. & Kamarlouei, M. & Hallak, T.S. & Guedes Soares, C., 2020. "Oil-hydraulic power take-off concept for an oscillating wave surge converter," Renewable Energy, Elsevier, vol. 159(C), pages 1297-1309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:35:y:2014:i:c:p:336-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.