IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v155y2019icp227-243.html
   My bibliography  Save this article

Optimal chiller loading by improved artificial fish swarm algorithm for energy saving

Author

Listed:
  • Zheng, Zhi-xin
  • Li, Jun-qing
  • Duan, Pei-yong

Abstract

This study presents an improved artificial fish swarm algorithm (VAFSA) to solve the optimal chiller loading (OCL) problem, using minimal power consumption of chillers and cooling towers as the objective function. In the proposed algorithm, several components are developed, such as initialization method based decimal system, food concentration function, bulletin board approach, target position search mechanism, and position move method. Then, the adjustment strategy of search range of artificial fish, which combines the global search with local search, is proposed for improving the search ability of VAFSA. To testify the performance of VAFSA, three well-known case studies are tested with the comparison with other recently reported approaches. The experimental results show that VAFSA can obtain power saving compared with other approaches, and also with the competitive convergence ability. The proposed algorithm can be used as an attractive alternative method to operate air-conditioning systems.

Suggested Citation

  • Zheng, Zhi-xin & Li, Jun-qing & Duan, Pei-yong, 2019. "Optimal chiller loading by improved artificial fish swarm algorithm for energy saving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 227-243.
  • Handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:227-243
    DOI: 10.1016/j.matcom.2018.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418301083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuyan Han & Dunwei Gong & Junqing Li & Yong Zhang, 2016. "Solving the blocking flow shop scheduling problem with makespan using a modified fruit fly optimisation algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6782-6797, November.
    2. Li, Jun-qing & Pan, Quan-ke, 2013. "Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities," International Journal of Production Economics, Elsevier, vol. 145(1), pages 4-17.
    3. Pan, Quan-Ke & Wang, Ling & Li, Jun-Qing & Duan, Jun-Hua, 2014. "A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation," Omega, Elsevier, vol. 45(C), pages 42-56.
    4. Chang, Yung-Chung & Chan, Tien-Shun & Lee, Wen-Shing, 2010. "Economic dispatch of chiller plant by gradient method for saving energy," Applied Energy, Elsevier, vol. 87(4), pages 1096-1101, April.
    5. Hong-Yan Sang & Quan-Ke Pan & Pei-Yong Duan & Jun-Qing Li, 2018. "An effective discrete invasive weed optimization algorithm for lot-streaming flowshop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1337-1349, August.
    6. Chengdong Li & Zixiang Ding & Dongbin Zhao & Jianqiang Yi & Guiqing Zhang, 2017. "Building Energy Consumption Prediction: An Extreme Deep Learning Approach," Energies, MDPI, vol. 10(10), pages 1-20, October.
    7. K. Z. Gao & P. N. Suganthan & Q. K. Pan & T. J. Chua & T. X. Cai & C. S. Chong, 2016. "Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 363-374, April.
    8. Coelho, Leandro dos Santos & Klein, Carlos Eduardo & Sabat, Samrat L. & Mariani, Viviana Cocco, 2014. "Optimal chiller loading for energy conservation using a new differential cuckoo search approach," Energy, Elsevier, vol. 75(C), pages 237-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Tian & Chuang Ye & Jie Zhu & Jide Niu & Yakai Lu, 2023. "Accelerating Optimal Control Strategy Generation for HVAC Systems Using a Scenario Reduction Method: A Case Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
    2. Sulaiman, Mohd Herwan & Mustaffa, Zuriani, 2024. "Chiller energy prediction in commercial building: A metaheuristic-Enhanced deep learning approach," Energy, Elsevier, vol. 297(C).
    3. Yang, Qiangda & Dong, Ning & Zhang, Jie, 2021. "An enhanced adaptive bat algorithm for microgrid energy scheduling," Energy, Elsevier, vol. 232(C).
    4. Yamile Díaz Torres & Paride Gullo & Hernán Hernández Herrera & Migdalia Torres del Toro & Roy Reyes Calvo & Jorge Iván Silva Ortega & Julio Gómez Sarduy, 2023. "Energy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings," Energies, MDPI, vol. 16(9), pages 1-23, April.
    5. Pisut Pongchairerks, 2019. "A Two-Level Metaheuristic Algorithm for the Job-Shop Scheduling Problem," Complexity, Hindawi, vol. 2019, pages 1-11, March.
    6. Min-Yong Qi & Jun-Qing Li & Yu-Yan Han & Jin-Xin Dong, 2020. "Optimal Chiller Loading for Energy Conservation Using an Improved Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 13(15), pages 1-18, July.
    7. Li, Ze & Guo, Junfei & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "A multi-strategy improved sparrow search algorithm of large-scale refrigeration system: Optimal loading distribution of chillers," Applied Energy, Elsevier, vol. 349(C).
    8. Lian, Kuang-Yow & Hong, Yong-Jie & Chang, Che-Wei & Su, Yu-Wei, 2022. "A novel data-driven optimal chiller loading regulator based on backward modeling approach," Applied Energy, Elsevier, vol. 327(C).
    9. Ho, W.T. & Yu, F.W., 2021. "Improved model and optimization for the energy performance of chiller system with diverse component staging," Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federica Acerbi & Mirco Rampazzo & Giuseppe De Nicolao, 2020. "An Exact Algorithm for the Optimal Chiller Loading Problem and Its Application to the Optimal Chiller Sequencing Problem," Energies, MDPI, vol. 13(23), pages 1-29, December.
    2. Min-Yong Qi & Jun-Qing Li & Yu-Yan Han & Jin-Xin Dong, 2020. "Optimal Chiller Loading for Energy Conservation Using an Improved Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 13(15), pages 1-18, July.
    3. Li, Ze & Guo, Junfei & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "A multi-strategy improved sparrow search algorithm of large-scale refrigeration system: Optimal loading distribution of chillers," Applied Energy, Elsevier, vol. 349(C).
    4. Ding, Yan & Wang, Qiaochu & Kong, Xiangfei & Yang, Kun, 2019. "Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios," Applied Energy, Elsevier, vol. 250(C), pages 1600-1617.
    5. Lian, Kuang-Yow & Hong, Yong-Jie & Chang, Che-Wei & Su, Yu-Wei, 2022. "A novel data-driven optimal chiller loading regulator based on backward modeling approach," Applied Energy, Elsevier, vol. 327(C).
    6. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    7. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    8. Gui Li & Gai-Ge Wang & Shan Wang, 2021. "Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective Optimization," Mathematics, MDPI, vol. 9(4), pages 1-34, February.
    9. Yong Wang & Yuting Wang & Yuyan Han, 2023. "A Variant Iterated Greedy Algorithm Integrating Multiple Decoding Rules for Hybrid Blocking Flow Shop Scheduling Problem," Mathematics, MDPI, vol. 11(11), pages 1-25, May.
    10. Zhengyu Hu & Wenrui Liu & Shengchen Ling & Kuan Fan, 2021. "Research on multi-objective optimal scheduling considering the balance of labor workload distribution," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-15, August.
    11. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    12. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
    13. Jin-Young Kim & Sung-Bae Cho, 2019. "Electric Energy Consumption Prediction by Deep Learning with State Explainable Autoencoder," Energies, MDPI, vol. 12(4), pages 1-14, February.
    14. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2023. "Audit-Based Energy Performance Analysis of Multifamily Buildings in South-East Poland," Energies, MDPI, vol. 16(12), pages 1-21, June.
    15. Hasani, Ali & Hosseini, Seyed Mohammad Hassan, 2020. "A bi-objective flexible flow shop scheduling problem with machine-dependent processing stages: Trade-off between production costs and energy consumption," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    16. Hongfeng Wang & Min Huang & Junwei Wang, 2019. "An effective metaheuristic algorithm for flowshop scheduling with deteriorating jobs," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2733-2742, October.
    17. Deng, Na & Cai, Rongchang & Gao, Yuan & Zhou, Zhihua & He, Guansong & Liu, Dongyi & Zhang, Awen, 2017. "A MINLP model of optimal scheduling for a district heating and cooling system: A case study of an energy station in Tianjin," Energy, Elsevier, vol. 141(C), pages 1750-1763.
    18. Vincent, Immanuel & Lee, Eun-Chong & Cha, Kyung-Ho & Kim, Hyung-Man, 2021. "The WASP model on the symbiotic strategy of renewable and nuclear power for the future of ‘Renewable Energy 3020’ policy in South Korea," Renewable Energy, Elsevier, vol. 172(C), pages 929-940.
    19. Wen-Shing Lee & Wen-Hsin Lin & Chin-Chi Cheng & Chien-Yu Lin, 2021. "Optimal Chiller Loading by Team Particle Swarm Algorithm for Reducing Energy Consumption," Energies, MDPI, vol. 14(21), pages 1-16, October.
    20. Zhi Li & Ray Y. Zhong & Ali Vatankhah Barenji & J. J. Liu & C. X. Yu & George Q. Huang, 2021. "Bi-objective hybrid flow shop scheduling with common due date," Operational Research, Springer, vol. 21(2), pages 1153-1178, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:227-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.