IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6372-d455065.html
   My bibliography  Save this article

An Exact Algorithm for the Optimal Chiller Loading Problem and Its Application to the Optimal Chiller Sequencing Problem

Author

Listed:
  • Federica Acerbi

    (Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy)

  • Mirco Rampazzo

    (Department of Information Engineering, University of Padova, 35131 Padova, Italy)

  • Giuseppe De Nicolao

    (Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy)

Abstract

The optimal management of multiple chiller systems calls for the solution of the so-called optimal chiller loading (OCL) problem. Due to the interplay of continuous and logical constraints, OCL is an NP-hard problem, so that a variety of heuristic algorithms have been proposed in the literature. Herein, an algorithm for its exact solution, named X-OCL, is developed under the assumption that the chillers’ power consumption curves are quadratic. The proposed method hinges on a decomposition of the solution space so that the overall OCL problem is decomposed to a set of equality constrained quadratic programming problems that can be solved in closed form. By applying the new X-OCL solver to well known case studies, we assess and compare the performances of several literature algorithms, highlighting also some errors in the published results. Moreover, X-OCL is used to design a greedy optimal chiller sequencing (OCS) solver, called X-OCS. The X-OCS is tested on two literature benchmarks and on the model of the heating, ventilation and air-conditioning (HVAC) system of a semiconductor plant, over a two-year period. The performances of X-OCS are remarkably close to the theoretical optimal performance.

Suggested Citation

  • Federica Acerbi & Mirco Rampazzo & Giuseppe De Nicolao, 2020. "An Exact Algorithm for the Optimal Chiller Loading Problem and Its Application to the Optimal Chiller Sequencing Problem," Energies, MDPI, vol. 13(23), pages 1-29, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6372-:d:455065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    2. Chang, Yung-Chung & Chan, Tien-Shun & Lee, Wen-Shing, 2010. "Economic dispatch of chiller plant by gradient method for saving energy," Applied Energy, Elsevier, vol. 87(4), pages 1096-1101, April.
    3. Coelho, Leandro dos Santos & Klein, Carlos Eduardo & Sabat, Samrat L. & Mariani, Viviana Cocco, 2014. "Optimal chiller loading for energy conservation using a new differential cuckoo search approach," Energy, Elsevier, vol. 75(C), pages 237-243.
    4. Chang, Yung-Chung, 2006. "An innovative approach for demand side management—optimal chiller loading by simulated annealing," Energy, Elsevier, vol. 31(12), pages 1883-1896.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yamile Díaz Torres & Paride Gullo & Hernán Hernández Herrera & Migdalia Torres del Toro & Roy Reyes Calvo & Jorge Iván Silva Ortega & Julio Gómez Sarduy, 2023. "Energy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings," Energies, MDPI, vol. 16(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min-Yong Qi & Jun-Qing Li & Yu-Yan Han & Jin-Xin Dong, 2020. "Optimal Chiller Loading for Energy Conservation Using an Improved Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 13(15), pages 1-18, July.
    2. Wang, Yijun & Jin, Xinqiao & Shi, Wantao & Wang, Jiangqing, 2019. "Online chiller loading strategy based on the near-optimal performance map for energy conservation," Applied Energy, Elsevier, vol. 238(C), pages 1444-1451.
    3. Li, Ze & Guo, Junfei & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "A multi-strategy improved sparrow search algorithm of large-scale refrigeration system: Optimal loading distribution of chillers," Applied Energy, Elsevier, vol. 349(C).
    4. Ding, Yan & Wang, Qiaochu & Kong, Xiangfei & Yang, Kun, 2019. "Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios," Applied Energy, Elsevier, vol. 250(C), pages 1600-1617.
    5. Chang-Ming Lin & Chun-Yin Wu & Ko-Ying Tseng & Chih-Chiang Ku & Sheng-Fuu Lin, 2019. "Applying Two-Stage Differential Evolution for Energy Saving in Optimal Chiller Loading," Energies, MDPI, vol. 12(4), pages 1-12, February.
    6. Ho, W.T. & Yu, F.W., 2021. "Improved model and optimization for the energy performance of chiller system with diverse component staging," Energy, Elsevier, vol. 217(C).
    7. Coelho, Leandro dos Santos & Klein, Carlos Eduardo & Sabat, Samrat L. & Mariani, Viviana Cocco, 2014. "Optimal chiller loading for energy conservation using a new differential cuckoo search approach," Energy, Elsevier, vol. 75(C), pages 237-243.
    8. Lian, Kuang-Yow & Hong, Yong-Jie & Chang, Che-Wei & Su, Yu-Wei, 2022. "A novel data-driven optimal chiller loading regulator based on backward modeling approach," Applied Energy, Elsevier, vol. 327(C).
    9. Zheng, Zhi-xin & Li, Jun-qing & Duan, Pei-yong, 2019. "Optimal chiller loading by improved artificial fish swarm algorithm for energy saving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 227-243.
    10. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    11. Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
    12. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2020. "A risk-based robust optimal chiller sequencing control strategy for energy-efficient operation considering measurement uncertainties," Applied Energy, Elsevier, vol. 280(C).
    13. Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).
    14. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    15. Hinkelman, Kathryn & Wang, Jing & Zuo, Wangda & Gautier, Antoine & Wetter, Michael & Fan, Chengliang & Long, Nicholas, 2022. "Modelica-based modeling and simulation of district cooling systems: A case study," Applied Energy, Elsevier, vol. 311(C).
    16. Deng, Na & Cai, Rongchang & Gao, Yuan & Zhou, Zhihua & He, Guansong & Liu, Dongyi & Zhang, Awen, 2017. "A MINLP model of optimal scheduling for a district heating and cooling system: A case study of an energy station in Tianjin," Energy, Elsevier, vol. 141(C), pages 1750-1763.
    17. Wen-Shing Lee & Wen-Hsin Lin & Chin-Chi Cheng & Chien-Yu Lin, 2021. "Optimal Chiller Loading by Team Particle Swarm Algorithm for Reducing Energy Consumption," Energies, MDPI, vol. 14(21), pages 1-16, October.
    18. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    19. Kuo, Cheng-Chien, 2009. "Reactive energy scheduling using bi-objective programming with modified particle swarm optimization," Energy, Elsevier, vol. 34(6), pages 804-815.
    20. Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6372-:d:455065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.