IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3760-d387824.html
   My bibliography  Save this article

Optimal Chiller Loading for Energy Conservation Using an Improved Fruit Fly Optimization Algorithm

Author

Listed:
  • Min-Yong Qi

    (College of Computer Science, Liaocheng University, Liaocheng 252059, China)

  • Jun-Qing Li

    (College of Computer Science, Liaocheng University, Liaocheng 252059, China
    School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China)

  • Yu-Yan Han

    (College of Computer Science, Liaocheng University, Liaocheng 252059, China)

  • Jin-Xin Dong

    (College of Computer Science, Liaocheng University, Liaocheng 252059, China)

Abstract

In the multi-chiller of the air conditioning system, the optimal chiller loading (OCL) is an important research topic. This research is to find the appropriate partial load ratio ( PLR ) for each chiller in order to minimize the total energy consumption of the multi-chiller under the system cooling load ( CL ) requirements. However, this optimization problem has not been well studied. In this paper, in order to solve the OCL problem, we propose an improved fruit fly optimization algorithm (IFOA). A linear generation mechanism is developed to uniformly generate candidate solutions, and a new dynamic search radius method is employed to balance the local and global search ability of IFOA. To empirically evaluate the performance of the proposed IFOA, a number of comparative experiments are conducted on three well-known cases. The experimental results show that IFOA found 14 optimal values (the optimal values among all algorithms) under a total of 17 CL s in three cases, and the ratio of the optimal values found was 82.4%, which was the highest among all algorithms. In addition, the mean value of all objective functions of IFOA is smaller and the standard deviation is equal to or close to 0, which proves that the algorithm has high stability. It can be concluded that IFOA is an ideal method to solve the OCL problem.

Suggested Citation

  • Min-Yong Qi & Jun-Qing Li & Yu-Yan Han & Jin-Xin Dong, 2020. "Optimal Chiller Loading for Energy Conservation Using an Improved Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 13(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3760-:d:387824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Yung-Chung & Chan, Tien-Shun & Lee, Wen-Shing, 2010. "Economic dispatch of chiller plant by gradient method for saving energy," Applied Energy, Elsevier, vol. 87(4), pages 1096-1101, April.
    2. Jiang, Weiheng & Wu, Xiaogang & Gong, Yi & Yu, Wanxin & Zhong, Xinhui, 2020. "Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption," Energy, Elsevier, vol. 193(C).
    3. Zheng, Zhi-xin & Li, Jun-qing & Duan, Pei-yong, 2019. "Optimal chiller loading by improved artificial fish swarm algorithm for energy saving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 227-243.
    4. Chang-Ming Lin & Chun-Yin Wu & Ko-Ying Tseng & Chih-Chiang Ku & Sheng-Fuu Lin, 2019. "Applying Two-Stage Differential Evolution for Energy Saving in Optimal Chiller Loading," Energies, MDPI, vol. 12(4), pages 1-12, February.
    5. Coelho, Leandro dos Santos & Klein, Carlos Eduardo & Sabat, Samrat L. & Mariani, Viviana Cocco, 2014. "Optimal chiller loading for energy conservation using a new differential cuckoo search approach," Energy, Elsevier, vol. 75(C), pages 237-243.
    6. Chang, Yung-Chung, 2006. "An innovative approach for demand side management—optimal chiller loading by simulated annealing," Energy, Elsevier, vol. 31(12), pages 1883-1896.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Shing Lee & Wen-Hsin Lin & Chin-Chi Cheng & Chien-Yu Lin, 2021. "Optimal Chiller Loading by Team Particle Swarm Algorithm for Reducing Energy Consumption," Energies, MDPI, vol. 14(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ze & Guo, Junfei & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "A multi-strategy improved sparrow search algorithm of large-scale refrigeration system: Optimal loading distribution of chillers," Applied Energy, Elsevier, vol. 349(C).
    2. Federica Acerbi & Mirco Rampazzo & Giuseppe De Nicolao, 2020. "An Exact Algorithm for the Optimal Chiller Loading Problem and Its Application to the Optimal Chiller Sequencing Problem," Energies, MDPI, vol. 13(23), pages 1-29, December.
    3. Lian, Kuang-Yow & Hong, Yong-Jie & Chang, Che-Wei & Su, Yu-Wei, 2022. "A novel data-driven optimal chiller loading regulator based on backward modeling approach," Applied Energy, Elsevier, vol. 327(C).
    4. Wen-Shing Lee & Wen-Hsin Lin & Chin-Chi Cheng & Chien-Yu Lin, 2021. "Optimal Chiller Loading by Team Particle Swarm Algorithm for Reducing Energy Consumption," Energies, MDPI, vol. 14(21), pages 1-16, October.
    5. Chang-Ming Lin & Chun-Yin Wu & Ko-Ying Tseng & Chih-Chiang Ku & Sheng-Fuu Lin, 2019. "Applying Two-Stage Differential Evolution for Energy Saving in Optimal Chiller Loading," Energies, MDPI, vol. 12(4), pages 1-12, February.
    6. Ho, W.T. & Yu, F.W., 2021. "Improved model and optimization for the energy performance of chiller system with diverse component staging," Energy, Elsevier, vol. 217(C).
    7. Wang, Yijun & Jin, Xinqiao & Shi, Wantao & Wang, Jiangqing, 2019. "Online chiller loading strategy based on the near-optimal performance map for energy conservation," Applied Energy, Elsevier, vol. 238(C), pages 1444-1451.
    8. Coelho, Leandro dos Santos & Klein, Carlos Eduardo & Sabat, Samrat L. & Mariani, Viviana Cocco, 2014. "Optimal chiller loading for energy conservation using a new differential cuckoo search approach," Energy, Elsevier, vol. 75(C), pages 237-243.
    9. Ding, Yan & Wang, Qiaochu & Kong, Xiangfei & Yang, Kun, 2019. "Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios," Applied Energy, Elsevier, vol. 250(C), pages 1600-1617.
    10. Zheng, Zhi-xin & Li, Jun-qing & Duan, Pei-yong, 2019. "Optimal chiller loading by improved artificial fish swarm algorithm for energy saving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 227-243.
    11. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    12. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    13. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    14. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    15. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    16. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    17. Zhe Tian & Chuang Ye & Jie Zhu & Jide Niu & Yakai Lu, 2023. "Accelerating Optimal Control Strategy Generation for HVAC Systems Using a Scenario Reduction Method: A Case Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
    18. Trull, Oscar & García-Díaz, J. Carlos & Troncoso, Alicia, 2021. "One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities," Energy, Elsevier, vol. 231(C).
    19. Shun Liu & Kexin Wu & Chufeng Jiang & Bin Huang & Danqing Ma, 2023. "Financial Time-Series Forecasting: Towards Synergizing Performance And Interpretability Within a Hybrid Machine Learning Approach," Papers 2401.00534, arXiv.org.
    20. Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3760-:d:387824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.