IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics0096300320304896.html
   My bibliography  Save this article

A bi-objective flexible flow shop scheduling problem with machine-dependent processing stages: Trade-off between production costs and energy consumption

Author

Listed:
  • Hasani, Ali
  • Hosseini, Seyed Mohammad Hassan

Abstract

This paper aims to propose a flexible flow shop scheduling problem (FFSP) with machine-dependent processing stages. The parallel machines in the first stage are considered unrelated with different technology levels and some of them are multifunctional that can do several processes on jobs. Therefore, the jobs that are assigned to these machines don't require to be processed in some next stages. We conduct the problem considering production costs and energy consumption as two conflict objective functions. Furthermore, setup times are assumed as sequence-dependent and are need when a machine starts to process a new job. This problem is described with a numeric example, and its parameters and decision variables are defined. Then a linear mathematical model based on MIP is developed to solve the problem in small-sized scales. Since the problem is discussed in an NP-hard environment, a new approach based on the Non-dominated Sorting Genetic Algorithm (NSGA-II) is introduced to find optimal or near-optimal solutions. Some numerical examples in different conditions are tuned as test problems and different metrics that are popular in multi-objective optimization environment such as ER, GD, and ONVG are used to demonstrate performance of the proposed algorithm. The computational result indicates appropriate performance of the algorithm in solving this bi-objective problem. Moreover, the comparison result shows superiority of this algorithm over SPEA 2 as another multi-optimization method in solving the problem. Finally, supplementary analysis is presented by adjusting different amount of the makespan as the pre-known index for controlling completion time. The result indicates that the solution approach can provide proper alternatives for managers in different various situations.

Suggested Citation

  • Hasani, Ali & Hosseini, Seyed Mohammad Hassan, 2020. "A bi-objective flexible flow shop scheduling problem with machine-dependent processing stages: Trade-off between production costs and energy consumption," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304896
    DOI: 10.1016/j.amc.2020.125533
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320304896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. CHEN Shiyi, 2009. "Engine or drag: Can high energy consumption and CO2 emission drive the sustainable development of Chinese industry?," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 4(4), pages 548-571, December.
    2. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    3. Leilei Meng & Chaoyong Zhang & Xinyu Shao & Yaping Ren & Caile Ren, 2019. "Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines," International Journal of Production Research, Taylor & Francis Journals, vol. 57(4), pages 1119-1145, February.
    4. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
    5. Pan, Quan-Ke & Wang, Ling & Li, Jun-Qing & Duan, Jun-Hua, 2014. "A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation," Omega, Elsevier, vol. 45(C), pages 42-56.
    6. Kaifeng Geng & Chunming Ye & Zhen hua Dai & Li Liu, 2020. "Bi-Objective Re-Entrant Hybrid Flow Shop Scheduling considering Energy Consumption Cost under Time-of-Use Electricity Tariffs," Complexity, Hindawi, vol. 2020, pages 1-17, February.
    7. Jacek Blazewicz & Klaus H. Ecker & Erwin Pesch & Günter Schmidt & Malgorzata Sterna & Jan Weglarz, 2019. "Handbook on Scheduling," International Handbooks on Information Systems, Springer, edition 2, number 978-3-319-99849-7, November.
    8. Ding, Jian-Ya & Song, Shiji & Wu, Cheng, 2016. "Carbon-efficient scheduling of flow shops by multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 248(3), pages 758-771.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    2. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    2. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    3. Alvarez-Meaza, Izaskun & Zarrabeitia-Bilbao, Enara & Rio-Belver, Rosa-María & Garechana-Anacabe, Gaizka, 2021. "Green scheduling to achieve green manufacturing: Pursuing a research agenda by mapping science," Technology in Society, Elsevier, vol. 67(C).
    4. Foumani, Mehdi & Smith-Miles, Kate, 2019. "The impact of various carbon reduction policies on green flowshop scheduling," Applied Energy, Elsevier, vol. 249(C), pages 300-315.
    5. Matthias Gerhard Wichmann & Christoph Johannes & Thomas Stefan Spengler, 2019. "An extension of the general lot-sizing and scheduling problem (GLSP) with time-dependent energy prices," Journal of Business Economics, Springer, vol. 89(5), pages 481-514, July.
    6. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    7. Zhou, Shengchao & Jin, Mingzhou & Du, Ni, 2020. "Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times," Energy, Elsevier, vol. 209(C).
    8. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2021. "Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey," LIDAM Discussion Papers CORE 2021019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Deming Lei & Youlian Zheng & Xiuping Guo, 2017. "A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3126-3140, June.
    10. Xiaoyan Li & Xuedong Liang & Zhi Li, 2023. "The Strategy of Strengthening Efficiency and Environmental Performance of Product Changeover in the Multiproduct Production System," SAGE Open, , vol. 13(3), pages 21582440231, September.
    11. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    12. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    13. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    14. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    15. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    16. Zhengyu Hu & Wenrui Liu & Shengchen Ling & Kuan Fan, 2021. "Research on multi-objective optimal scheduling considering the balance of labor workload distribution," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-15, August.
    17. He, Xiaoping, 2015. "Regional differences in China's CO2 abatement cost," Energy Policy, Elsevier, vol. 80(C), pages 145-152.
    18. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    19. Pablo Alvarez-Campana & Felix Villafanez & Fernando Acebes & David Poza, 2024. "Simulation-based approach for Multiproject Scheduling based on composite priority rules," Papers 2406.02102, arXiv.org.
    20. Xiao, Qinge & Li, Congbo & Tang, Ying & Pan, Jian & Yu, Jun & Chen, Xingzheng, 2019. "Multi-component energy modeling and optimization for sustainable dry gear hobbing," Energy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.