IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v130y2016icp236-250.html
   My bibliography  Save this article

Multi-criteria fuzzy-logic optimized supervision for hybrid railway power substations

Author

Listed:
  • Pankovits, Petronela
  • Abbes, Dhaker
  • Saudemont, Christophe
  • Brisset, Stephane
  • Pouget, Julien
  • Robyns, Benoit

Abstract

Renewable energy sources and storage units’ integration in the railway power substations is an alternative solution to handle the energy consumption, due to railway traffic increase and electricity market liberalization. To integrate this technology change in the railway network, an adapted energy management system has to be established. However, when considering only energy efficiency aspects on the energy management strategy, an economical viable solution cannot be ensured. This paper proposes a supervision strategy based on multi-criteria approach including energetic, environmental and economic constraints. The energy management objectives such as reducing the network power demand, favoring local renewable consumption and ensuring storage availability are treated in different time levels. Economic aspects are first integrated in predictive mode based on forecast data. Then a supervision strategy is developed based on fuzzy logic approach and graphical tool to build it. An optimization study of the supervision strategy is proposed in order to conclude on system performance. Simulation results are discussed for different scenarios cases and the reaction of the hybrid railway power substation is detailed. Results show that this methodology can be successfully applied for hybrid systems energy management in order to improve their energy efficiency.

Suggested Citation

  • Pankovits, Petronela & Abbes, Dhaker & Saudemont, Christophe & Brisset, Stephane & Pouget, Julien & Robyns, Benoit, 2016. "Multi-criteria fuzzy-logic optimized supervision for hybrid railway power substations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 236-250.
  • Handle: RePEc:eee:matcom:v:130:y:2016:i:c:p:236-250
    DOI: 10.1016/j.matcom.2016.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475416300799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2016.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    2. Robyns, Benoît & Davigny, Arnaud & Saudemont, Christophe, 2013. "Methodologies for supervision of Hybrid Energy Sources based on Storage Systems – A survey," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 52-71.
    3. Breban, Stefan & Saudemont, Christophe & Vieillard, Sébastien & Robyns, Benoît, 2013. "Experimental design and genetic algorithm optimization of a fuzzy-logic supervisor for embedded electrical power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 91-107.
    4. Courtecuisse, Vincent & Sprooten, Jonathan & Robyns, Benoît & Petit, Marc & Francois, Bruno & Deuse, Jacques, 2010. "A methodology to design a fuzzy logic based supervision of Hybrid Renewable Energy Systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(2), pages 208-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Almaksour, Khaled & Krim, Youssef & Kouassi, N’guessan & Navarro, Nicolas & François, Bruno & Letrouvé, Tony & Saudemont, Christophe & Taunay, Lionel & Robyns, Benoit, 2021. "Comparison of dynamic models for a DC railway electrical network including an AC/DC bi-directional power station," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 244-266.
    2. Loy-Benitez, Jorge & Safder, Usman & Nguyen, Hai-Tra & Li, Qian & Woo, TaeYong & Yoo, ChangKyoo, 2021. "Techno-economic assessment and smart management of an integrated fuel cell-based energy system with absorption chiller for power, hydrogen, heating, and cooling in an electrified railway network," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouallaga, Anouar & Davigny, Arnaud & Courtecuisse, Vincent & Robyns, Benoit, 2017. "Methodology for technical and economic assessment of electric vehicles integration in distribution grid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 172-189.
    2. Robyns, Benoît & Davigny, Arnaud & Saudemont, Christophe, 2013. "Methodologies for supervision of Hybrid Energy Sources based on Storage Systems – A survey," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 52-71.
    3. Aparicio, Néstor & Añó-Villalba, Salvador & Belenguer, Enrique & Blasco-Gimenez, Ramon, 2018. "Automatic under-frequency load shedding mal-operation in power systems with high wind power penetration," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 200-209.
    4. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2017. "Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers," Applied Energy, Elsevier, vol. 196(C), pages 18-33.
    5. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    6. Fethi Khlifi & Habib Cherif & Jamel Belhadj, 2021. "Environmental and Economic Optimization and Sizing of a Micro-Grid with Battery Storage for an Industrial Application," Energies, MDPI, vol. 14(18), pages 1-17, September.
    7. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    8. Hang, Yin & Du, Lili & Qu, Ming & Peeta, Srinivas, 2013. "Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings," Renewable Energy, Elsevier, vol. 52(C), pages 67-78.
    9. Zhang, Wei & Zhu, Rui & Liu, Bin & Ramakrishna, Seeram, 2012. "High-performance hybrid solar cells employing metal-free organic dye modified TiO2 as photoelectrode," Applied Energy, Elsevier, vol. 90(1), pages 305-308.
    10. Sherif A. Zaid & Ahmed M. Kassem & Aadel M. Alatwi & Hani Albalawi & Hossam AbdelMeguid & Atef Elemary, 2023. "Optimal Control of an Autonomous Microgrid Integrated with Super Magnetic Energy Storage Using an Artificial Bee Colony Algorithm," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    11. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    12. Nicolas Martinez & Youssef Benchaabane & Rosa Elvira Silva & Adrian Ilinca & Hussein Ibrahim & Ambrish Chandra & Daniel R. Rousse, 2019. "Computer Model for a Wind–Diesel Hybrid System with Compressed Air Energy Storage," Energies, MDPI, vol. 12(18), pages 1-18, September.
    13. Mwaka I. Juma & Bakari M. M. Mwinyiwiwa & Consalva J. Msigwa & Aviti T. Mushi, 2021. "Design of a Hybrid Energy System with Energy Storage for Standalone DC Microgrid Application," Energies, MDPI, vol. 14(18), pages 1-15, September.
    14. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    15. Hong, Jin Gi & Zhang, Wen & Luo, Jian & Chen, Yongsheng, 2013. "Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions," Applied Energy, Elsevier, vol. 110(C), pages 244-251.
    16. Deetjen, Thomas A. & Martin, Henry & Rhodes, Joshua D. & Webber, Michael E., 2018. "Modeling the optimal mix and location of wind and solar with transmission and carbon pricing considerations," Renewable Energy, Elsevier, vol. 120(C), pages 35-50.
    17. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    18. Upadhyay, Subho & Sharma, M.P., 2016. "Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India," Energy, Elsevier, vol. 94(C), pages 352-366.
    19. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    20. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:130:y:2016:i:c:p:236-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.