Author
Listed:
- Aouad, Anthony
- Almaksour, Khaled
- Abbes, Dhaker
Abstract
Decentralized energy production, particularly from photovoltaic (PV) systems, is becoming increasingly prevalent, leading to a rise in the number of energy producers and consumers, or ”prosumers”. These prosumers, equipped with their own energy generation and storage systems, are not just passive consumers but active participants in the energy market. They generate their own electricity, often from renewable sources, and can feed excess power back into the grid, store it for later use, or share it within a local energy community. This evolving energy paradigm presents new opportunities and challenges in terms of energy management and optimization, necessitating innovative approaches to ensure efficient and sustainable use of energy resources. This paper introduces an innovative storage management method for grid-connected photovoltaic (PV) systems. The method is designed to minimize either the economic or ecological cost, or to find an optimal balance between the two, under various tariff scenarios. This is achieved while adhering to a full self-consumption constraint imposed by the distribution system operator. The control strategy is underpinned by forecasts of electrical consumption, production, and CO2 emissions, which are developed using feedforward neural network models. These models are trained on data from a real-scale smart-grid demonstrator at the Catholic University of Lille, France. The results of the study offer a comparative analysis of the economic and ecological benefits of the three proposed strategies, demonstrating that the best compromise is achieved when considering the off-peak tariff option. Furthermore, a real-time controller was implemented on the Energy Management System (EMS) of the demonstrator and tested over a 24-hour period, yielding satisfactory results. This paper, therefore, presents a significant advancement in the field of storage management for grid-connected PV systems.
Suggested Citation
Aouad, Anthony & Almaksour, Khaled & Abbes, Dhaker, 2024.
"Storage management optimization based on electrical consumption and production forecast in a photovoltaic system,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PB), pages 128-147.
Handle:
RePEc:eee:matcom:v:224:y:2024:i:pb:p:128-147
DOI: 10.1016/j.matcom.2023.10.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:224:y:2024:i:pb:p:128-147. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.