IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2010i2p208-224.html
   My bibliography  Save this article

A methodology to design a fuzzy logic based supervision of Hybrid Renewable Energy Systems

Author

Listed:
  • Courtecuisse, Vincent
  • Sprooten, Jonathan
  • Robyns, Benoît
  • Petit, Marc
  • Francois, Bruno
  • Deuse, Jacques

Abstract

Hybrid Renewable Energy Systems (HRES) are increasingly used to improve the grid integration of wind power generators. The goal of this work is to propose a methodology to design a fuzzy logic based supervision of this new kind of production unit. A graphical modeling tool is proposed to facilitate the analysis and the determination of fuzzy control algorithms adapted to complex hybrid systems. To explain this methodology, the association of wind generators, decentralized generators and storage systems are considered for the production of electrical power. The methodology is divided in six steps covering the design of a supervisor from the system work specifications to an optimized implementation of the control. The performance of this supervisor is shown with the help of simulations. Finally, the application of this methodology to the supervision of different topologies of HRES is also proposed to bring forward the systematic dimension of the approach.

Suggested Citation

  • Courtecuisse, Vincent & Sprooten, Jonathan & Robyns, Benoît & Petit, Marc & Francois, Bruno & Deuse, Jacques, 2010. "A methodology to design a fuzzy logic based supervision of Hybrid Renewable Energy Systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(2), pages 208-224.
  • Handle: RePEc:eee:matcom:v:81:y:2010:i:2:p:208-224
    DOI: 10.1016/j.matcom.2010.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410000741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, D. & Fakham, H. & Zhou, T. & François, B., 2010. "Application of Petri nets for the energy management of a photovoltaic based power station including storage units," Renewable Energy, Elsevier, vol. 35(6), pages 1117-1124.
    2. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    2. Aouad, Anthony & Almaksour, Khaled & Abbes, Dhaker, 2024. "Storage management optimization based on electrical consumption and production forecast in a photovoltaic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PB), pages 128-147.
    3. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    4. Breban, Stefan & Saudemont, Christophe & Vieillard, Sébastien & Robyns, Benoît, 2013. "Experimental design and genetic algorithm optimization of a fuzzy-logic supervisor for embedded electrical power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 91-107.
    5. Ziogou, Chrysovalantou & Ipsakis, Dimitris & Seferlis, Panos & Bezergianni, Stella & Papadopoulou, Simira & Voutetakis, Spyros, 2013. "Optimal production of renewable hydrogen based on an efficient energy management strategy," Energy, Elsevier, vol. 55(C), pages 58-67.
    6. Bouallaga, Anouar & Davigny, Arnaud & Courtecuisse, Vincent & Robyns, Benoit, 2017. "Methodology for technical and economic assessment of electric vehicles integration in distribution grid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 172-189.
    7. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    8. Das, Barun K. & Al-Abdeli, Yasir M. & Woolridge, Matthew, 2019. "Effects of battery technology and load scalability on stand-alone PV/ICE hybrid micro-grid system performance," Energy, Elsevier, vol. 168(C), pages 57-69.
    9. Robyns, Benoît & Davigny, Arnaud & Saudemont, Christophe, 2013. "Methodologies for supervision of Hybrid Energy Sources based on Storage Systems – A survey," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 52-71.
    10. Hegazy Rezk & N. Kanagaraj & Mujahed Al-Dhaifallah, 2020. "Design and Sensitivity Analysis of Hybrid Photovoltaic-Fuel-Cell-Battery System to Supply a Small Community at Saudi NEOM City," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    11. Bourbon, R. & Ngueveu, S.U. & Roboam, X. & Sareni, B. & Turpin, C. & Hernandez-Torres, D., 2019. "Energy management optimization of a smart wind power plant comparing heuristic and linear programming methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 418-431.
    12. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2017. "Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers," Applied Energy, Elsevier, vol. 196(C), pages 18-33.
    13. Hatti, M. & Meharrar, A. & Tioursi, M., 2011. "Power management strategy in the alternative energy photovoltaic/PEM Fuel Cell hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5104-5110.
    14. Aparicio, Néstor & Añó-Villalba, Salvador & Belenguer, Enrique & Blasco-Gimenez, Ramon, 2018. "Automatic under-frequency load shedding mal-operation in power systems with high wind power penetration," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 200-209.
    15. Pankovits, Petronela & Abbes, Dhaker & Saudemont, Christophe & Brisset, Stephane & Pouget, Julien & Robyns, Benoit, 2016. "Multi-criteria fuzzy-logic optimized supervision for hybrid railway power substations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 236-250.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    2. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    3. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    4. Wissem, Zghal & Gueorgui, Kantchev & Hédi, Kchaou, 2012. "Modeling and technical–economic optimization of an autonomous photovoltaic system," Energy, Elsevier, vol. 37(1), pages 263-272.
    5. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    6. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
    7. Gonzalez de Durana, Jose & Barambones, Oscar, 2018. "Technology-free microgrid modeling with application to demand side management," Applied Energy, Elsevier, vol. 219(C), pages 165-178.
    8. Liu, F. & Tait, S. & Schellart, A. & Mayfield, M. & Boxall, J., 2020. "Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    9. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    10. Kalim Ullah & Sajjad Ali & Taimoor Ahmad Khan & Imran Khan & Sadaqat Jan & Ibrar Ali Shah & Ghulam Hafeez, 2020. "An Optimal Energy Optimization Strategy for Smart Grid Integrated with Renewable Energy Sources and Demand Response Programs," Energies, MDPI, vol. 13(21), pages 1-17, November.
    11. Mahelet G. Fikru & Gregory Gelles & Ana-Maria Ichim & Joseph D. Smith, 2019. "Notes on the Economics of Residential Hybrid Energy System," Energies, MDPI, vol. 12(14), pages 1-18, July.
    12. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    13. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    14. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    15. Shabir Ahmad & Israr Ullah & Faisal Jamil & DoHyeun Kim, 2020. "Toward the Optimal Operation of Hybrid Renewable Energy Resources in Microgrids," Energies, MDPI, vol. 13(20), pages 1-19, October.
    16. Ackermann, Simon & Szabo, Andrei & Bamberger, Joachim & Steinke, Florian, 2022. "Design and optimization of performance guarantees for hybrid power plants," Energy, Elsevier, vol. 239(PA).
    17. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    18. Wang, B.C. & Sechilariu, M. & Locment, F., 2013. "Power flow Petri Net modelling for building integrated multi-source power system with smart grid interaction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 119-133.
    19. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    20. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2010:i:2:p:208-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.