Comparison of dynamic models for a DC railway electrical network including an AC/DC bi-directional power station
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2020.05.027
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pablo Arboleya & Islam El-Sayed & Bassam Mohamed & Clement Mayet, 2019. "Modeling, Simulationand Analysis of On-Board Hybrid Energy Storage Systems for Railway Applications," Energies, MDPI, vol. 12(11), pages 1-21, June.
- Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
- Pankovits, Petronela & Abbes, Dhaker & Saudemont, Christophe & Brisset, Stephane & Pouget, Julien & Robyns, Benoit, 2016. "Multi-criteria fuzzy-logic optimized supervision for hybrid railway power substations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 236-250.
- Yang, Songpo & Liao, Feixiong & Wu, Jianjun & Timmermans, Harry J.P. & Sun, Huijun & Gao, Ziyou, 2020. "A bi-objective timetable optimization model incorporating energy allocation and passenger assignment in an energy-regenerative metro system," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 85-113.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
- Wu, Zhibei & Sun, Jitao & Xu, Ruihua, 2021. "Consensus-based connected vehicles platoon control via impulsive control method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Chen, Junlan & Pu, Ziyuan & Guo, Xiucheng & Cao, Jieyu & Zhang, Fang, 2023. "Multiperiod metro timetable optimization based on the complex network and dynamic travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
- Zhang, Haoxiang & Wang, Feng & Lin, Zichang & Xu, Bing, 2023. "Optimization of speed trajectory for electric wheel loaders: Battery lifetime extension," Applied Energy, Elsevier, vol. 351(C).
- Mariano Gallo & Marilisa Botte & Antonio Ruggiero & Luca D’Acierno, 2020. "A Simulation Approach for Optimising Energy-Efficient Driving Speed Profiles in Metro Lines," Energies, MDPI, vol. 13(22), pages 1-17, November.
- Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
- Leszek Kasprzyk & Andrzej Tomczewski & Robert Pietracho & Agata Mielcarek & Zbigniew Nadolny & Krzysztof Tomczewski & Grzegorz Trzmiel & Juan Alemany, 2020. "Optimization of a PV-Wind Hybrid Power Supply Structure with Electrochemical Storage Intended for Supplying a Load with Known Characteristics," Energies, MDPI, vol. 13(22), pages 1-31, November.
- Feng, Zongbao & Chen, Weiya & Liu, Yang & Chen, Hongyu & Skibniewski, Mirosław J., 2023. "Long-term equilibrium relationship analysis and energy-saving measures of metro energy consumption and its influencing factors based on cointegration theory and an ARDL model," Energy, Elsevier, vol. 263(PD).
- Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Deng, Pengyi & Wu, Xiaohua & Zhang, Jiye, 2022. "Hierarchical energy management of a hybrid propulsion system considering speed profile optimization," Energy, Elsevier, vol. 244(PB).
- Zhou, Wenliang & Huang, Yu & Deng, Lianbo & Qin, Jin, 2023. "Collaborative optimization of energy-efficient train schedule and train circulation plan for urban rail," Energy, Elsevier, vol. 263(PA).
- Kang, Liujiang & Li, Hao & Sun, Huijun & Wu, Jianjun & Cao, Zhiguang & Buhigiro, Nsabimana, 2021. "First train timetabling and bus service bridging in intermodal bus-and-train transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 443-462.
- Han, Zhenyu & Han, Baoming & Li, Dewei & Ning, Shangbin & Yang, Ruixia & Yin, Yonghao, 2021. "Train timetabling in rail transit network under uncertain and dynamic demand using Advanced and Adaptive NSGA-II," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 65-99.
- Yang, Songpo & Chen, Yanyan & Dong, Zhurong & Wu, Jianjun, 2023. "A collaborative operation mode of energy storage system and train operation system in power supply network," Energy, Elsevier, vol. 276(C).
- Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2021. "Train timetabling with stop-skipping, passenger flow, and platform choice considerations," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 52-74.
- Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2020. "Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks," Energy, Elsevier, vol. 206(C).
- Szymon Haładyn, 2021. "The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
- Kyoungho Ahn & Ahmed Aredah & Hesham A. Rakha & Tongchuan Wei & H. Christopher Frey, 2023. "Simple Diesel Train Fuel Consumption Model for Real-Time Train Applications," Energies, MDPI, vol. 16(8), pages 1-15, April.
- Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
- Qu, Shuai & Ren, Yuhao & Hu, Guobiao & Ding, Wei & Dong, Liwei & Yang, Jizhong & Wu, Zaixin & Zhu, Shengyang & Yang, Yaowen & Zhai, Wanming, 2024. "Event-driven piezoelectric energy harvesting for railway field applications," Applied Energy, Elsevier, vol. 364(C).
- Zhang, Lang & He, Deqiang & He, Yan & Liu, Bin & Chen, Yanjun & Shan, Sheng, 2022. "Real-time energy saving optimization method for urban rail transit train timetable under delay condition," Energy, Elsevier, vol. 258(C).
More about this item
Keywords
Railway system; Dynamic model; Regenerative power; Real time simulation; Power-Hardware-In-the-Loop;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:184:y:2021:i:c:p:244-266. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.