IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p604-d314465.html
   My bibliography  Save this article

An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions

Author

Listed:
  • Xiangyuan Zheng

    (Division of Ocean Science and Technology, Tsinghua University, Shenzhen International Graduate School, Shenzhen 518005, China)

  • Huadong Zheng

    (Division of Ocean Science and Technology, Tsinghua University, Shenzhen International Graduate School, Shenzhen 518005, China
    Department of Civil Engineering, Tsinghua University, Beijing 100084, China)

  • Yu Lei

    (Division of Ocean Science and Technology, Tsinghua University, Shenzhen International Graduate School, Shenzhen 518005, China
    Department of Civil Engineering, Tsinghua University, Beijing 100084, China)

  • Yi Li

    (Division of Ocean Science and Technology, Tsinghua University, Shenzhen International Graduate School, Shenzhen 518005, China)

  • Wei Li

    (Powerchina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

Abstract

This study presents a new concept design combining multiple megawatt (MW) vertical-axis wind turbines (VAWTs) and a solar array with a floating steel fish-farming cage. This combined wind–solar–aquaculture (WSA) system is intended to utilize the ocean space and water resources more effectively and more economically, while greatly shortening the payback period of investment in offshore power generation. The details of this WSA design are described, showing that a square-shaped fishing cage serves as a floating foundation for the 7600 m 2 solar array and four multi MW VAWTs. The WAMIT program based on potential-flow theory is employed to obtain the WSA’s motion response amplitude operators (RAOs) in sinusoidal waves of varying periods. The motion RAOs indicated that the proposed concept possesses better hydrodynamic seakeeping performances than its OC3Hywind spar and OC4DeepCwind semi-submersible counterparts. A potential site located in the northwest South China Sea is selected to deploy the WSA. Its feasibility is then examined in terms of the hydrodynamic motions and structural dynamic response driven by wind, waves, and current. Fully coupled time-domain simulations are carried out for 50-year survival conditions. The whole structure exhibits outstanding performance for its small motions in random wind and seas. Moreover, under these survival conditions, the top accelerations and tower base stresses of the VAWTs and mooring line tensions readily meet the design requirements. Technically, the WSA has strong competitiveness and wide prospects in the offshore industry for both power exploitation and marine aquaculture in intermediate and deep waters.

Suggested Citation

  • Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:604-:d:314465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Zhengshun & Madsen, Helge Aagaard & Gao, Zhen & Moan, Torgeir, 2017. "Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines," Renewable Energy, Elsevier, vol. 101(C), pages 1285-1298.
    2. Adam, Frank & Myland, Thomas & Schuldt, Burkhard & Großmann, Jochen & Dahlhaus, Frank, 2014. "Evaluation of internal force superposition on a TLP for wind turbines," Renewable Energy, Elsevier, vol. 71(C), pages 271-275.
    3. Karimirad, Madjid, 2013. "Modeling aspects of a floating wind turbine for coupled wave–wind-induced dynamic analyses," Renewable Energy, Elsevier, vol. 53(C), pages 299-305.
    4. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    5. Ting Rui Wen & Kai Wang & Zhengshun Cheng & Muk Chen Ong, 2018. "Spar-Type Vertical-Axis Wind Turbines in Moderate Water Depth: A Feasibility Study," Energies, MDPI, vol. 11(3), pages 1-17, March.
    6. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    7. Jinghua Lin & You-Lin Xu & Yong Xia & Chao Li, 2019. "Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation," Energies, MDPI, vol. 12(13), pages 1-31, July.
    8. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    9. Senad Apelfröjd & Sandra Eriksson & Hans Bernhoff, 2016. "A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University," Energies, MDPI, vol. 9(7), pages 1-16, July.
    10. Sethuraman, Latha & Venugopal, Vengatesan, 2013. "Hydrodynamic response of a stepped-spar floating wind turbine: Numerical modelling and tank testing," Renewable Energy, Elsevier, vol. 52(C), pages 160-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, H.-D. & Zheng, X.Y. & Zhao, S.X., 2020. "Arrangement of clustered straight-bladed wind turbines," Energy, Elsevier, vol. 200(C).
    2. Charalampos Baniotopoulos, 2022. "Advances in Floating Wind Energy Converters," Energies, MDPI, vol. 15(15), pages 1-3, August.
    3. Michał Bernard Pietrzak & Bartłomiej Igliński & Wojciech Kujawski & Paweł Iwański, 2021. "Energy Transition in Poland—Assessment of the Renewable Energy Sector," Energies, MDPI, vol. 14(8), pages 1-23, April.
    4. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Francisco Haces-Fernandez, 2020. "Wind Energy Implementation to Mitigate Wildfire Risk and Preemptive Blackouts," Energies, MDPI, vol. 13(10), pages 1-19, May.
    6. Roman Gabl & Robert Klar & Thomas Davey & David M. Ingram, 2021. "Experimental Data of a Hexagonal Floating Structure under Waves," Data, MDPI, vol. 6(10), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    2. Niccolo Bruschi & Giulio Ferri & Enzo Marino & Claudio Borri, 2020. "Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine," Energies, MDPI, vol. 13(23), pages 1-14, December.
    3. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    4. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    6. Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
    7. Chen, Hung-Cheng, 2013. "Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability," Applied Energy, Elsevier, vol. 103(C), pages 155-164.
    8. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    9. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    10. Gomis-Bellmunt, Oriol & Junyent-Ferré, Adrià & Sumper, Andreas & Galceran-Arellano, Samuel, 2010. "Maximum generation power evaluation of variable frequency offshore wind farms when connected to a single power converter," Applied Energy, Elsevier, vol. 87(10), pages 3103-3109, October.
    11. Elma, Onur & Selamogullari, Ugur Savas, 2012. "A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamics," Applied Energy, Elsevier, vol. 96(C), pages 400-408.
    12. Li, Zhe & Reynolds, Anthony & Boyle, Fergal, 2014. "Domestic integration of micro-renewable electricity generation in Ireland – The current status and economic reality," Renewable Energy, Elsevier, vol. 64(C), pages 244-254.
    13. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    14. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    15. De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Error analysis of short term wind power prediction models," Applied Energy, Elsevier, vol. 88(4), pages 1298-1311, April.
    16. Chen, Shin-Guang, 2013. "Bayesian approach for optimal PV system sizing under climate change," Omega, Elsevier, vol. 41(2), pages 176-185.
    17. Kwon, Sunghoon & Won, Wangyun & Kim, Jiyong, 2016. "A superstructure model of an isolated power supply system using renewable energy: Development and application to Jeju Island, Korea," Renewable Energy, Elsevier, vol. 97(C), pages 177-188.
    18. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    19. Gupta, R.A. & Kumar, Rajesh & Bansal, Ajay Kumar, 2015. "BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1366-1375.
    20. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:604-:d:314465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.