IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v172y2020icp71-89.html
   My bibliography  Save this article

Higher order methods for fractional differential equation based on fractional backward differentiation formula of order three

Author

Listed:
  • Bonab, Zahra Farzaneh
  • Javidi, Mohammad

Abstract

In this paper, a family of explicit methods are presented based on the fractional backward differentiation formula of order three for the numerical solution of the fractional differential equations. The major part of the paper is focused on the study of the stability properties of the introduced methods. The intervals of stability for multistep methods have been calculated and a number of numerical examples are given to confirm theoretical results.

Suggested Citation

  • Bonab, Zahra Farzaneh & Javidi, Mohammad, 2020. "Higher order methods for fractional differential equation based on fractional backward differentiation formula of order three," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 71-89.
  • Handle: RePEc:eee:matcom:v:172:y:2020:i:c:p:71-89
    DOI: 10.1016/j.matcom.2019.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419303933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gholami, Saeid & Babolian, Esmail & Javidi, Mohammad, 2019. "Fractional pseudospectral integration/differentiation matrix and fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 314-327.
    2. Garrappa, Roberto, 2015. "Trapezoidal methods for fractional differential equations: Theoretical and computational aspects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 110(C), pages 96-112.
    3. Galeone, Luciano & Garrappa, Roberto, 2008. "Fractional Adams–Moulton methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 1358-1367.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nur Amirah Zabidi & Zanariah Abdul Majid & Adem Kilicman & Faranak Rabiei, 2020. "Numerical Solutions of Fractional Differential Equations by Using Fractional Explicit Adams Method," Mathematics, MDPI, vol. 8(10), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    2. Garrappa, Roberto, 2015. "Trapezoidal methods for fractional differential equations: Theoretical and computational aspects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 110(C), pages 96-112.
    3. Arenas, Abraham J. & González-Parra, Gilberto & Chen-Charpentier, Benito M., 2016. "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 48-63.
    4. Das, Saptarshi & Pan, Indranil & Das, Shantanu, 2016. "Effect of random parameter switching on commensurate fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 157-173.
    5. Dmytro Sytnyk & Barbara Wohlmuth, 2023. "Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    6. Wang, Yuan-Ming & Xie, Bo, 2023. "A fourth-order fractional Adams-type implicit–explicit method for nonlinear fractional ordinary differential equations with weakly singular solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 21-48.
    7. Rainey Lyons & Aghalaya S. Vatsala & Ross A. Chiquet, 2017. "Picard’s Iterative Method for Caputo Fractional Differential Equations with Numerical Results," Mathematics, MDPI, vol. 5(4), pages 1-9, November.
    8. Yang, Changqing, 2023. "Improved spectral deferred correction methods for fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Jannelli, Alessandra, 2024. "A finite difference method on quasi-uniform grids for the fractional boundary-layer Blasius flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 382-398.
    10. Saad, Khaled M. & Gómez-Aguilar, J.F. & Almadiy, Abdulrhman A., 2020. "A fractional numerical study on a chronic hepatitis C virus infection model with immune response," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Hamdan, Nur ’Izzati & Kilicman, Adem, 2018. "A fractional order SIR epidemic model for dengue transmission," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 55-62.
    12. Čermák, Jan & Nechvátal, Luděk, 2019. "Stability and chaos in the fractional Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 24-33.
    13. Eshaghi, Shiva & Khoshsiar Ghaziani, Reza & Ansari, Alireza, 2020. "Hopf bifurcation, chaos control and synchronization of a chaotic fractional-order system with chaos entanglement function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 321-340.
    14. Roberto Garrappa, 2018. "Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial," Mathematics, MDPI, vol. 6(2), pages 1-23, January.
    15. Kai Diethelm & Roberto Garrappa & Martin Stynes, 2020. "Good (and Not So Good) Practices in Computational Methods for Fractional Calculus," Mathematics, MDPI, vol. 8(3), pages 1-21, March.
    16. Sowa, Marcin, 2018. "Application of SubIval in solving initial value problems with fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 86-103.
    17. Cardone, Angelamaria & Conte, Dajana, 2020. "Stability analysis of spline collocation methods for fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 501-514.
    18. Marina Popolizio, 2018. "Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions," Mathematics, MDPI, vol. 6(1), pages 1-13, January.
    19. Moustafa, Mahmoud & Mohd, Mohd Hafiz & Ismail, Ahmad Izani & Abdullah, Farah Aini, 2018. "Dynamical analysis of a fractional-order Rosenzweig–MacArthur model incorporating a prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 1-13.
    20. Garrappa, Roberto & Popolizio, Marina, 2011. "On the use of matrix functions for fractional partial differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(5), pages 1045-1056.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:172:y:2020:i:c:p:71-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.