IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v112y2015icp40-55.html
   My bibliography  Save this article

A new Lorenz-type hyperchaotic system with a curve of equilibria

Author

Listed:
  • Chen, Yuming
  • Yang, Qigui

Abstract

Little seems to be known about hyperchaotic systems with a curve of equilibria. Based on the classical Lorenz system, this paper proposes a new four-dimensional Lorenz-type hyperchaotic system which has a curve of equilibria. This new system can generate not only hyperchaotic attractors but also chaotic, quasi-periodic and periodic attractors, as well as singular degenerate heteroclinic cycles. Of particular interest is the observation that there are four types of coexisting attractors of this new hyperchaotic system: (i) chaotic attractor and quasi-periodic attractor, (ii) chaotic attractor and singular degenerate heteroclinic cycle, (iii) periodic attractor and singular degenerate heteroclinic cycle, and (iv) different periodic attractors. Furthermore, many singular degenerate heteroclinic cycles are found, which may lead to complex dynamics of hyperchaotic system with a curve of equilibria.

Suggested Citation

  • Chen, Yuming & Yang, Qigui, 2015. "A new Lorenz-type hyperchaotic system with a curve of equilibria," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 112(C), pages 40-55.
  • Handle: RePEc:eee:matcom:v:112:y:2015:i:c:p:40-55
    DOI: 10.1016/j.matcom.2014.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847541400305X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2014.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jafari, Sajad & Sprott, J.C., 2013. "Simple chaotic flows with a line equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 79-84.
    2. Mahmoud, Gamal M. & Mahmoud, Emad E., 2010. "Synchronization and control of hyperchaotic complex Lorenz system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2286-2296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Jay Prakash & Roy, Binoy Krishna & Jafari, Sajad, 2018. "New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 243-257.
    2. Pham, Viet–Thanh & Jafari, Sajad & Volos, Christos & Kapitaniak, Tomasz, 2016. "A gallery of chaotic systems with an infinite number of equilibrium points," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 58-63.
    3. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Wang, Haijun & Dong, Guili, 2019. "New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 272-286.
    5. Kingni, Sifeu Takougang & Pham, Viet-Thanh & Jafari, Sajad & Woafo, Paul, 2017. "A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 209-218.
    6. Yu Liu & Yan Zhou & Biyao Guo, 2023. "Hopf Bifurcation, Periodic Solutions, and Control of a New 4D Hyperchaotic System," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
    7. Xiong Wang & Viet-Thanh Pham & Christos Volos, 2017. "Dynamics, Circuit Design, and Synchronization of a New Chaotic System with Closed Curve Equilibrium," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    8. Singh, Jay Prakash & Roy, B.K., 2016. "The nature of Lyapunov exponents is (+, +, −, −). Is it a hyperchaotic system?," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 73-85.
    9. Pham, Viet–Thanh & Jafari, Sajad & Volos, Christos & Fortuna, Luigi, 2019. "Simulation and experimental implementation of a line–equilibrium system without linear term," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 213-221.
    10. Wang, Haijun & Li, Xianyi, 2018. "A novel hyperchaotic system with infinitely many heteroclinic orbits coined," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 5-15.
    11. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    2. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Marius-F. Danca, 2020. "Coexisting Hidden and self-excited attractors in an economic system of integer or fractional order," Papers 2008.12108, arXiv.org, revised Sep 2020.
    4. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    5. Joshi, Manoj & Ranjan, Ashish, 2020. "Investigation of dynamical properties in hysteresis-based a simple chaotic waveform generator with two stable equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Lai, Qiang & Nestor, Tsafack & Kengne, Jacques & Zhao, Xiao-Wen, 2018. "Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 92-102.
    7. Jafari, Sajad & Dehghan, Soroush & Chen, Guanrong & Kingni, Sifeu Takougang & Rajagopal, Karthikeyan, 2018. "Twin birds inside and outside the cage," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 135-140.
    8. Srinivasan, K. & Chandrasekar, V.K. & Venkatesan, A. & Raja Mohamed, I., 2016. "Duffing–van der Pol oscillator type dynamics in Murali–Lakshmanan–Chua (MLC) circuit," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 60-71.
    9. Mahmoud, Emad E., 2013. "Modified projective phase synchronization of chaotic complex nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 69-85.
    10. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    11. Cuimei Jiang & Shutang Liu, 2017. "Synchronization and Antisynchronization of -Coupled Complex Permanent Magnet Synchronous Motor Systems with Ring Connection," Complexity, Hindawi, vol. 2017, pages 1-15, January.
    12. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    13. Jalal, Adnan A. & Amen, Azad I. & Sulaiman, Nejmaddin A., 2020. "Darboux integrability of the simple chaotic flow with a line equilibria differential system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    14. Hong-Min Li & Yan-Feng Yang & Yang Zhou & Chun-Lai Li & Kun Qian & Zhao-Yu Li & Jian-Rong Du, 2019. "Dynamics and Synchronization of a Memristor-Based Chaotic System with No Equilibrium," Complexity, Hindawi, vol. 2019, pages 1-11, October.
    15. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    16. Kingni, Sifeu Takougang & Jafari, Sajad & Pham, Viet-Thanh & Woafo, Paul, 2017. "Constructing and analyzing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 172-182.
    17. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 111-119.
    18. Mezatio, Brice Anicet & Motchongom, Marceline Tingue & Wafo Tekam, Blaise Raoul & Kengne, Romanic & Tchitnga, Robert & Fomethe, Anaclet, 2019. "A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 100-115.
    19. Singh, Jay Prakash & Roy, Binoy Krishna & Jafari, Sajad, 2018. "New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 243-257.
    20. Aiguo Wu & Shijian Cang & Ruiye Zhang & Zenghui Wang & Zengqiang Chen, 2018. "Hyperchaos in a Conservative System with Nonhyperbolic Fixed Points," Complexity, Hindawi, vol. 2018, pages 1-8, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:112:y:2015:i:c:p:40-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.