IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4962739.html
   My bibliography  Save this article

Dynamical Analysis, Synchronization, Circuit Design, and Secure Communication of a Novel Hyperchaotic System

Author

Listed:
  • Li Xiong
  • Zhenlai Liu
  • Xinguo Zhang

Abstract

This paper is devoted to introduce a novel fourth-order hyperchaotic system. The hyperchaotic system is constructed by adding a linear feedback control level based on a modified Lorenz-like chaotic circuit with reduced number of amplifiers. The local dynamical entities, such as the basic dynamical behavior, the divergence, the eigenvalue, and the Lyapunov exponents of the new hyperchaotic system, are all investigated analytically and numerically. Then, an active control method is derived to achieve global chaotic synchronization of the novel hyperchaotic system through making the synchronization error system asymptotically stable at the origin based on Lyapunov stability theory. Next, the proposed novel hyperchaotic system is applied to construct another new hyperchaotic system with circuit deformation and design a new hyperchaotic secure communication circuit. Furthermore, the implementation of two novel electronic circuits of the proposed hyperchaotic systems is presented, examined, and realized using physical components. A good qualitative agreement is shown between the simulations and the experimental results around 500 kHz and below 1 MHz.

Suggested Citation

  • Li Xiong & Zhenlai Liu & Xinguo Zhang, 2017. "Dynamical Analysis, Synchronization, Circuit Design, and Secure Communication of a Novel Hyperchaotic System," Complexity, Hindawi, vol. 2017, pages 1-23, November.
  • Handle: RePEc:hin:complx:4962739
    DOI: 10.1155/2017/4962739
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/4962739.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/4962739.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/4962739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ma, Jun & Wu, Fuqiang & Ren, Guodong & Tang, Jun, 2017. "A class of initials-dependent dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 65-76.
    2. Leonov, G.A. & Kuznetsov, N.V., 2015. "On differences and similarities in the analysis of Lorenz, Chen, and Lu systems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 334-343.
    3. Gamal M. Mahmoud & Mansour E. Ahmed & Emad E. Mahmoud, 2008. "Analysis Of Hyperchaotic Complex Lorenz Systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(10), pages 1477-1494.
    4. Mahmoud, Gamal M. & Mahmoud, Emad E., 2010. "Synchronization and control of hyperchaotic complex Lorenz system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2286-2296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Guodong & Xue, Yuxiong & Li, Yuwei & Ma, Jun, 2019. "Field coupling benefits signal exchange between Colpitts systems," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 45-54.
    2. Aiguo Wu & Shijian Cang & Ruiye Zhang & Zenghui Wang & Zengqiang Chen, 2018. "Hyperchaos in a Conservative System with Nonhyperbolic Fixed Points," Complexity, Hindawi, vol. 2018, pages 1-8, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud, Emad E., 2013. "Modified projective phase synchronization of chaotic complex nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 69-85.
    2. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    3. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    4. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    5. Cuimei Jiang & Shutang Liu, 2017. "Synchronization and Antisynchronization of -Coupled Complex Permanent Magnet Synchronous Motor Systems with Ring Connection," Complexity, Hindawi, vol. 2017, pages 1-15, January.
    6. Liu, Yong & Ren, Guodong & Zhou, Ping & Hayat, Tasawar & Ma, Jun, 2019. "Synchronization in networks of initially independent dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 370-380.
    7. Ren, Guodong & Xue, Yuxiong & Li, Yuwei & Ma, Jun, 2019. "Field coupling benefits signal exchange between Colpitts systems," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 45-54.
    8. Alexeeva, Tatyana A. & Barnett, William A. & Kuznetsov, Nikolay V. & Mokaev, Timur N., 2020. "Dynamics of the Shapovalov mid-size firm model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Ding, Dawei & Yan, Jie & Wang, Nian & Liang, Dong, 2017. "Pinning synchronization of fractional order complex-variable dynamical networks with time-varying coupling," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 41-50.
    10. Zhang, Fuchen, 2015. "On a model of the dynamical systems describing convective fluid motion in rotating cavity," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 873-882.
    11. Yu Liu & Yan Zhou & Biyao Guo, 2023. "Hopf Bifurcation, Periodic Solutions, and Control of a New 4D Hyperchaotic System," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
    12. Nguyen, Le Hoa & Hong, Keum-Shik, 2011. "Synchronization of coupled chaotic FitzHugh–Nagumo neurons via Lyapunov functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 590-603.
    13. Ping Zhou & Meihua Ke, 2017. "A New 3D Autonomous Continuous System with Two Isolated Chaotic Attractors and Its Topological Horseshoes," Complexity, Hindawi, vol. 2017, pages 1-7, November.
    14. Fuchen Zhang & Rui Chen & Xiusu Chen, 2017. "Analysis of a Generalized Lorenz–Stenflo Equation," Complexity, Hindawi, vol. 2017, pages 1-6, December.
    15. Zhang, Fuchen & Shu, Yonglu, 2015. "Global dynamics for the simplified Lorenz system model," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 53-60.
    16. Wang, Chunni & Liu, Zhilong & Hobiny, Aatef & Xu, Wenkang & Ma, Jun, 2020. "Capturing and shunting energy in chaotic Chua circuit," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    17. Chen, Yuming & Yang, Qigui, 2015. "A new Lorenz-type hyperchaotic system with a curve of equilibria," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 112(C), pages 40-55.
    18. Wu, Fuqiang & Zhou, Ping & Alsaedi, Ahmed & Hayat, Tasawar & Ma, Jun, 2018. "Synchronization dependence on initial setting of chaotic systems without equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 124-132.
    19. Qasim M. Zainel & Saad M. Darwish & Murad B. Khorsheed, 2022. "Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    20. Ma, Jun & Xu, Wenkang & Zhou, Ping & Zhang, Ge, 2019. "Synchronization between memristive and initial-dependent oscillators driven by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4962739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.