IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics096007792200128x.html
   My bibliography  Save this article

Barrier function-based adaptive nonsingular sliding mode control of disturbed nonlinear systems: A linear matrix inequality approach

Author

Listed:
  • Mobayen, Saleh
  • Alattas, Khalid A.
  • Fekih, Afef
  • El-Sousy, Fayez F.M.
  • Bakouri, Mohsen

Abstract

In this study, a novel barrier function-based adaptive non-singular terminal sliding mode control methodology is suggested for robust stability of disturbed nonlinear systems. It is proved that the barrier function-based control method can force the state trajectories to converge to a region near origin in the finite time. A sufficient criterion is derived using Lyapunov stability theorem and linear matrix inequalities (LMIs) to satisfy the asymptotic stability of state trajectories. In addition, the design eliminates the necessity to have any knowledge about the upper bounds of external disturbances; a common requirement in sliding mode control implementation. The stability analysis verifies that the system states, under the designed control scheme, can asymptotically converge to a pre-defined region. Lastly, simulation studies are presented to confirm the efficacy and robustness of proposed approach.

Suggested Citation

  • Mobayen, Saleh & Alattas, Khalid A. & Fekih, Afef & El-Sousy, Fayez F.M. & Bakouri, Mohsen, 2022. "Barrier function-based adaptive nonsingular sliding mode control of disturbed nonlinear systems: A linear matrix inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s096007792200128x
    DOI: 10.1016/j.chaos.2022.111918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200128X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yang & Wang, Zhen & Chen, Mingshu & Kong, Lingyun, 2021. "Predefined-time sliding mode formation control for multiple autonomous underwater vehicles with uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Jafari, Sajad & Sprott, J.C., 2013. "Simple chaotic flows with a line equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 79-84.
    4. Sharafian, Amin & Sharifi, Alireza & Zhang, Weidong, 2020. "Different types of sliding mode controller for nonlinear fractional multi-Agent system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Yousefpour, Amin & Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Wei, Zhouchao, 2020. "A fractional-order hyper-chaotic economic system with transient chaos," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Meng & Zhuang, Guangming & Xia, Jianwei & Wang, Yanqian & Chen, Guoliang, 2022. "Stochastic admissibility and H∞ output feedback control for singular Markov jump systems under dynamic measurement output event-triggered strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Yassine Bouteraa & Javad Mostafaee & Mourad Kchaou & Rabeh Abbassi & Houssem Jerbi & Saleh Mobayen, 2022. "A New Simple Chaotic System with One Nonlinear Term," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    3. Zhang, Xin & Shi, Ran, 2022. "Novel fast fixed-time sliding mode trajectory tracking control for manipulator," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Masoud Chatavi & Mai The Vu & Saleh Mobayen & Afef Fekih, 2022. "H ∞ Robust LMI-Based Nonlinear State Feedback Controller of Uncertain Nonlinear Systems with External Disturbances," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    5. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Mengjiao & Zang, Hongyan & Bai, Luyuan, 2022. "A new predefined-time sliding mode control scheme for synchronizing chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Gao, Shanshan & Zhang, Shenggui & Chen, Xinzhuang, 2023. "Effects of changing the weights of arcs on the consensus convergence rate of a leader–follower multi-agent system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Khalid A. Alattas & Mai The Vu & Omid Mofid & Fayez F. M. El-Sousy & Abdullah K. Alanazi & Jan Awrejcewicz & Saleh Mobayen, 2022. "Adaptive Nonsingular Terminal Sliding Mode Control for Performance Improvement of Perturbed Nonlinear Systems," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
    4. Zhang, Xin & Shi, Ran, 2022. "Novel fast fixed-time sliding mode trajectory tracking control for manipulator," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    7. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Marius-F. Danca, 2020. "Coexisting Hidden and self-excited attractors in an economic system of integer or fractional order," Papers 2008.12108, arXiv.org, revised Sep 2020.
    9. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    10. Zhou, Shuang-Shuang & Jahanshahi, Hadi & Din, Qamar & Bekiros, Stelios & Alcaraz, Raúl & Alassafi, Madini O. & Alsaadi, Fawaz E. & Chu, Yu-Ming, 2021. "Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    12. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    13. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    14. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    16. Kingni, Sifeu Takougang & Jafari, Sajad & Pham, Viet-Thanh & Woafo, Paul, 2017. "Constructing and analyzing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 172-182.
    17. Sharafian, Amin & Kanesan, Jeevan & Khairuddin, Anis Salwa Mohd & Ramanathan, Anand & Sharifi, Alireza & Bai, Xiaoshan, 2023. "A novel approach to state estimation of HIV infection dynamics using fixed-time fractional order observer," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    18. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    19. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 111-119.
    20. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s096007792200128x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.