IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45880-1.html
   My bibliography  Save this article

Midbrain signaling of identity prediction errors depends on orbitofrontal cortex networks

Author

Listed:
  • Qingfang Liu

    (National Institute on Drug Abuse Intramural Research Program)

  • Yao Zhao

    (National Institute on Drug Abuse Intramural Research Program)

  • Sumedha Attanti

    (Mayo Clinic Alix School of Medicine)

  • Joel L. Voss

    (The University of Chicago)

  • Geoffrey Schoenbaum

    (National Institute on Drug Abuse Intramural Research Program)

  • Thorsten Kahnt

    (National Institute on Drug Abuse Intramural Research Program)

Abstract

Outcome-guided behavior requires knowledge about the identity of future rewards. Previous work across species has shown that the dopaminergic midbrain responds to violations in expected reward identity and that the lateral orbitofrontal cortex (OFC) represents reward identity expectations. Here we used network-targeted transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) during a trans-reinforcer reversal learning task to test the hypothesis that outcome expectations in the lateral OFC contribute to the computation of identity prediction errors (iPE) in the midbrain. Network-targeted TMS aiming at lateral OFC reduced the global connectedness of the lateral OFC and impaired reward identity learning in the first block of trials. Critically, TMS disrupted neural representations of expected reward identity in the OFC and modulated iPE responses in the midbrain. These results support the idea that iPE signals in the dopaminergic midbrain are computed based on outcome expectations represented in the lateral OFC.

Suggested Citation

  • Qingfang Liu & Yao Zhao & Sumedha Attanti & Joel L. Voss & Geoffrey Schoenbaum & Thorsten Kahnt, 2024. "Midbrain signaling of identity prediction errors depends on orbitofrontal cortex networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45880-1
    DOI: 10.1038/s41467-024-45880-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45880-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45880-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    2. Thomas A. Stalnaker & Nisha K. Cooch & Michael A. McDannald & Tzu-Lan Liu & Heather Wied & Geoffrey Schoenbaum, 2014. "Orbitofrontal neurons infer the value and identity of predicted outcomes," Nature Communications, Nature, vol. 5(1), pages 1-13, September.
    3. Nikos K. Logothetis & Jon Pauls & Mark Augath & Torsten Trinath & Axel Oeltermann, 2001. "Neurophysiological investigation of the basis of the fMRI signal," Nature, Nature, vol. 412(6843), pages 150-157, July.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. James D. Howard & Thorsten Kahnt, 2018. "Identity prediction errors in the human midbrain update reward-identity expectations in the orbitofrontal cortex," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    6. Wolfgang M. Pauli & Giovanni Gentile & Sven Collette & Julian M. Tyszka & John P. O’Doherty, 2019. "Evidence for model-based encoding of Pavlovian contingencies in the human brain," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva R. Pool & Wolfgang M. Pauli & Logan Cross & John P. O’Doherty, 2023. "Neural substrates of parallel devaluation-sensitive and devaluation-insensitive Pavlovian learning in humans," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    3. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    4. Zhao, Qing & Boomer, G. Scott & Silverman, Emily & Fleming, Kathy, 2017. "Accounting for the temporal variation of spatial effect improves inference and projection of population dynamics models," Ecological Modelling, Elsevier, vol. 360(C), pages 252-259.
    5. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    6. Earl W Duncan & Kerrie L Mengersen, 2020. "Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-28, May.
    7. repec:jss:jstsof:40:i05 is not listed on IDEAS
    8. Manuguerra Maurizio & Heller Gillian Z, 2010. "Ordinal Regression Models for Continuous Scales," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-20, April.
    9. Peng Zhang & Juxin Liu & Jianghu Dong & Jelena L. Holovati & Brenda Letcher & Locksley E. McGann, 2012. "A Bayesian Adjustment for Multiplicative Measurement Errors for a Calibration Problem with Application to a Stem Cell Study," Biometrics, The International Biometric Society, vol. 68(1), pages 268-274, March.
    10. Iain Pardoe & Dean K. Simonton, 2008. "Applying discrete choice models to predict Academy Award winners," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 375-394, April.
    11. Abadi, Fitsum & Barbraud, Christophe & Besson, Dominique & Bried, Joël & Crochet, Pierre-André & Delord, Karine & Forcada, Jaume & Grosbois, Vladimir & Phillips, Richard A. & Sagar, Paul & Thompson, P, 2014. "Importance of accounting for phylogenetic dependence in multi-species mark–recapture studies," Ecological Modelling, Elsevier, vol. 273(C), pages 236-241.
    12. Kramer, Michael R. & Cooper, Hannah L. & Drews-Botsch, Carolyn D. & Waller, Lance A. & Hogue, Carol R., 2010. "Metropolitan isolation segregation and Black-White disparities in very preterm birth: A test of mediating pathways and variance explained," Social Science & Medicine, Elsevier, vol. 71(12), pages 2108-2116, December.
    13. Federico ANDREIS & Pier Alda FERRARI, 2015. "Customer Satisfaction Evaluation Using Multidimensional Item Response Theory Models," Departmental Working Papers 2015-25, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    14. Greves Grow, H. Mollie & Cook, Andrea J. & Arterburn, David E. & Saelens, Brian E. & Drewnowski, Adam & Lozano, Paula, 2010. "Child obesity associated with social disadvantage of children's neighborhoods," Social Science & Medicine, Elsevier, vol. 71(3), pages 584-591, August.
    15. Laura A. Hatfield & Steve Gutreuter & Michael A. Boogaard & Bradley P. Carlin, 2011. "Multilevel Empirical Bayes Modeling for Improved Estimation of Toxicant Formulations to Suppress Parasitic Sea Lamprey in the Upper Great Lakes," Biometrics, The International Biometric Society, vol. 67(3), pages 1153-1162, September.
    16. Marc K. Francke & Alex Minne, 2017. "The Hierarchical Repeat Sales Model for Granular Commercial Real Estate and Residential Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 55(4), pages 511-532, November.
    17. Overstall, Antony M. & Forster, Jonathan J., 2010. "Default Bayesian model determination methods for generalised linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3269-3288, December.
    18. Xie, Kun & Ozbay, Kaan & Yang, Di & Xu, Chuan & Yang, Hong, 2021. "Modeling bicycle crash costs using big data: A grid-cell-based Tobit model with random parameters," Journal of Transport Geography, Elsevier, vol. 91(C).
    19. T. Loeys & Y. Rosseel & K. Baten, 2011. "A Joint Modeling Approach for Reaction Time and Accuracy in Psycholinguistic Experiments," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 487-503, July.
    20. Ghosh, Pulak & Albert, Paul S., 2009. "A Bayesian analysis for longitudinal semicontinuous data with an application to an acupuncture clinical trial," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 699-706, January.
    21. Feng Gao & J. Miller & Chengjie Xiong & Julia Beiser & Mae Gordon, 2011. "A joint-modeling approach to assess the impact of biomarker variability on the risk of developing clinical outcome," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 83-100, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45880-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.