IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v89y2020ics0966692320309741.html
   My bibliography  Save this article

How early hydrogen fuel cell vehicle adopters geographically evaluate a network of refueling stations in California

Author

Listed:
  • Kelley, Scott
  • Krafft, Aimee
  • Kuby, Michael
  • Lopez, Oscar
  • Stotts, Rhian
  • Liu, Jingteng

Abstract

After a few years of initial sales, there is an opportunity to analyze how early hydrogen fuel cell vehicle (FCV) adopters evaluated the spatial arrangement of a network of stations prior to adoption. Since strategies differ on how best to arrange initial stations in a region to facilitate adoption, understanding how they did so informs future station planning methods. We distributed a web-based survey to 129 FCV adopters throughout California in 2019, asking them where they lived and traveled at the time of adoption, up to five stations they planned to use, and subjective reasons for listing those stations. We estimated shortest travel times to respondents' homes and other frequent locations, and deviations from frequently traveled routes. We compared differences in subjective and objective convenience for primary, secondary, and lower-ranked stations, and tabulated the different combinations of stations that satisfied adopters' various geographic criteria. Over 80% planned to rely on a portfolio of multiple stations subjectively convenient to key activity locations, and nearly 25% who provided subjective geographic criteria for listing stations did not include “near home” as their top reason for their primary or secondary station. Estimated travel times to stations subjectively considered “near” home, work, and other location types exhibit variability, but consistently decay beyond 90 min. Primary stations are subjectively and objectively more convenient to home and work than lower-ranked stations, and more associated with subjective convenience to home and objective convenience to work than secondary stations. Other destination types align with lower-ranked stations.

Suggested Citation

  • Kelley, Scott & Krafft, Aimee & Kuby, Michael & Lopez, Oscar & Stotts, Rhian & Liu, Jingteng, 2020. "How early hydrogen fuel cell vehicle adopters geographically evaluate a network of refueling stations in California," Journal of Transport Geography, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:jotrge:v:89:y:2020:i:c:s0966692320309741
    DOI: 10.1016/j.jtrangeo.2020.102897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692320309741
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ogden, Joan & Nicholas, Michael, 2011. "Analysis of a "cluster" strategy for introducing hydrogen vehicles in Southern California," Energy Policy, Elsevier, vol. 39(4), pages 1923-1938, April.
    2. Linzenich, Anika & Arning, Katrin & Bongartz, Dominik & Mitsos, Alexander & Ziefle, Martina, 2019. "What fuels the adoption of alternative fuels? Examining preferences of German car drivers for fuel innovations," Applied Energy, Elsevier, vol. 249(C), pages 222-236.
    3. Caulfield, Brian & Farrell, Séona & McMahon, Brian, 2010. "Examining individuals preferences for hybrid electric and alternatively fuelled vehicles," Transport Policy, Elsevier, vol. 17(6), pages 381-387, November.
    4. Kelley, Scott & Kuby, Michael, 2013. "On the way or around the corner? Observed refueling choices of alternative-fuel drivers in Southern California," Journal of Transport Geography, Elsevier, vol. 33(C), pages 258-267.
    5. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    6. Kuby, Michael, 2019. "The opposite of ubiquitous: How early adopters of fast-filling alt-fuel vehicles adapt to the sparsity of stations," Journal of Transport Geography, Elsevier, vol. 75(C), pages 46-57.
    7. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.
    8. Hong, Shuyao & Kuby, Michael, 2016. "A threshold covering flow-based location model to build a critical mass of alternative-fuel stations," Journal of Transport Geography, Elsevier, vol. 56(C), pages 128-137.
    9. Melaina, Marc W, 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Institute of Transportation Studies, Working Paper Series qt8501255w, Institute of Transportation Studies, UC Davis.
    10. Jee Eun Kang & Will Recker, 2015. "Strategic Hydrogen Refueling Station Locations with Scheduling and Routing Considerations of Individual Vehicles," Transportation Science, INFORMS, vol. 49(4), pages 767-783, November.
    11. Yetano Roche, María & Mourato, Susana & Fischedick, Manfred & Pietzner, Katja & Viebahn, Peter, 2010. "Public attitudes towards and demand for hydrogen and fuel cell vehicles: A review of the evidence and methodological implications," Energy Policy, Elsevier, vol. 38(10), pages 5301-5310, October.
    12. Melaina, Marc W., 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Energy Policy, Elsevier, vol. 35(10), pages 4919-4934, October.
    13. Kelley, Scott & Kuby, Michael, 2017. "Decentralized refueling of compressed natural gas (CNG) fleet vehicles in Southern California," Energy Policy, Elsevier, vol. 109(C), pages 350-359.
    14. Upchurch, Christopher & Kuby, Michael, 2010. "Comparing the p-median and flow-refueling models for locating alternative-fuel stations," Journal of Transport Geography, Elsevier, vol. 18(6), pages 750-758.
    15. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huan, Ning & Yamamoto, Toshiyuki & Sato, Hitomi & Sala, Roser & Goncalves, Lila, 2024. "Perceptions to connections: A multidimensional investigation of hydrogen acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Pemberton, Simon & Nobajas, Alexandre & Waller, Richard, 2021. "Rapid charging provision, multiplicity and battery electric vehicle (BEV) mobility in the UK," Journal of Transport Geography, Elsevier, vol. 95(C).
    3. Hardman, Scott PhD & Davis, Adam PhD & Tal, Gil PhD, 2022. "Investigating Hydrogen Station Use and Station Access in California Using a Survey of Fuel Cell Vehicle Drivers," Institute of Transportation Studies, Working Paper Series qt4qp5m2kr, Institute of Transportation Studies, UC Davis.
    4. Suprava Chakraborty & Nallapaneni Manoj Kumar & Arunkumar Jayakumar & Santanu Kumar Dash & Devaraj Elangovan, 2021. "Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions," Sustainability, MDPI, vol. 13(22), pages 1-31, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuby, Michael, 2019. "The opposite of ubiquitous: How early adopters of fast-filling alt-fuel vehicles adapt to the sparsity of stations," Journal of Transport Geography, Elsevier, vol. 75(C), pages 46-57.
    2. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    3. Rodrigues Teixeira, Ana Carolina & Machado, Pedro Gerber & Borges, Raquel Rocha & Felipe Brito, Thiago Luis & Moutinho dos Santos, Edmilson & Mouette, Dominique, 2021. "The use of liquefied natural gas as an alternative fuel in freight transport – Evidence from a driver's point of view," Energy Policy, Elsevier, vol. 149(C).
    4. Scott Kelley, 2018. "Driver Use and Perceptions of Refueling Stations Near Freeways in a Developing Infrastructure for Alternative Fuel Vehicles," Social Sciences, MDPI, vol. 7(11), pages 1-18, November.
    5. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    6. Meysam Hosseini & Arsalan Rahmani & F. Hooshmand, 2022. "A robust model for recharging station location problem," Operational Research, Springer, vol. 22(4), pages 4397-4440, September.
    7. Anjos, Miguel F. & Gendron, Bernard & Joyce-Moniz, Martim, 2020. "Increasing electric vehicle adoption through the optimal deployment of fast-charging stations for local and long-distance travel," European Journal of Operational Research, Elsevier, vol. 285(1), pages 263-278.
    8. Yıldız, Barış & Arslan, Okan & Karaşan, Oya Ekin, 2016. "A branch and price approach for routing and refueling station location model," European Journal of Operational Research, Elsevier, vol. 248(3), pages 815-826.
    9. Zhao, Tian & Liu, Zhixin & Jamasb, Tooraj, 2022. "Developing hydrogen refueling stations: An evolutionary game approach and the case of China," Energy Economics, Elsevier, vol. 115(C).
    10. Hong, Shuyao & Kuby, Michael, 2016. "A threshold covering flow-based location model to build a critical mass of alternative-fuel stations," Journal of Transport Geography, Elsevier, vol. 56(C), pages 128-137.
    11. Ishengoma, Esther K. & Gabriel, Genoveva, 2021. "Factors influencing the payment of costs of converting oil-to CNG-fuelled cars in a market dominated by used-cars," Energy Policy, Elsevier, vol. 156(C).
    12. Ogden, Joan & Jaffe, Amy Myers & Scheitrum, Daniel & McDonald, Zane & Miller, Marshall, 2018. "Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature," Energy Policy, Elsevier, vol. 115(C), pages 317-329.
    13. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    14. Chorus, Caspar G. & Koetse, Mark J. & Hoen, Anco, 2013. "Consumer preferences for alternative fuel vehicles: Comparing a utility maximization and a regret minimization model," Energy Policy, Elsevier, vol. 61(C), pages 901-908.
    15. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    16. Kuby, Michael & Capar, Ismail & Kim, Jong-Geun, 2017. "Efficient and equitable transnational infrastructure planning for natural gas trucking in the European Union," European Journal of Operational Research, Elsevier, vol. 257(3), pages 979-991.
    17. Gül, Timur & Kypreos, Socrates & Turton, Hal & Barreto, Leonardo, 2009. "An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM)," Energy, Elsevier, vol. 34(10), pages 1423-1437.
    18. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).
    19. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    20. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:89:y:2020:i:c:s0966692320309741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.