IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v186y2024ics0191261524001231.html
   My bibliography  Save this article

Mathematical formulations for the multi-period alternative fuel refueling station location problem with routing under decision-dependent flow dynamics

Author

Listed:
  • Mahmutoğulları, Özlem
  • Yaman, Hande

Abstract

The refueling station location problem with routing considers vehicles’ ranges and drivers’ preferences about their routes to improve the alternative fuel station infrastructure. Comprehensive planning is necessary for developing a mature infrastructure to overcome budgetary constraints and spatial limitations. Hence, adopting a multi-period planning approach becomes crucial when taking into account the evolving demand for alternative fuel vehicles over time. The evolution of demand can be dependent on exogenous and endogenous factors. Although it is typical to account for exogenous demand growth in multi-period planning, a few studies also take into account an endogenous factor which is the refueling opportunity of drivers on their paths. In this study, in addition to the refueling opportunities, we consider the proximity of each individual station to the flow-based demands. We draw attention to the significance of considering the effects of individual station locations on demand evolution, as these strategic locations can play an important role in reducing the drivers’ range anxiety and increasing their acceptance of the technology. Hence, we introduce a multi-period alternative fuel refueling station location problem with routing under different vehicle flow evolution dynamics that employ various weights for the factors where the natural growth rate is exogenous and the decisions of station locations and flow coverage are endogenous to the problem. We propose three mixed integer linear programming formulations for different evolution dynamics. We carry out computational experiments on the real road networks of Belgium, California, and Turkey and present our findings on the performances of the proposed mathematical models and the gains that can be obtained by considering multi-period planning and incorporating the effects of decisions into the vehicle flow evolution.

Suggested Citation

  • Mahmutoğulları, Özlem & Yaman, Hande, 2024. "Mathematical formulations for the multi-period alternative fuel refueling station location problem with routing under decision-dependent flow dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transb:v:186:y:2024:i:c:s0191261524001231
    DOI: 10.1016/j.trb.2024.102999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:186:y:2024:i:c:s0191261524001231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.