IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v109y2017icp350-359.html
   My bibliography  Save this article

Decentralized refueling of compressed natural gas (CNG) fleet vehicles in Southern California

Author

Listed:
  • Kelley, Scott
  • Kuby, Michael

Abstract

While some compressed natural gas (CNG) vehicle fleets have a station at their base for central refueling, others lack refueling capability at their fleet depot and must rely on publicly available stations. To understand this kind of decentralized refueling behavior, we surveyed 133 drivers of CNG fleet vehicles at six public stations across the Los Angeles region. Nearly one-third of CNG fleet drivers were solely reliant upon public refueling for their operations. For each driver's refueling trip, we used GIS to compare the chosen station's proximity to the driver's fleet base and their deviation from the shortest path between their previous and next stops relative to all other stations they could have chosen. This revealed-preference approach shows that fleet drivers chose the station with the smallest deviation over the station closest to base by a 6:1 ratio, though this ratio varied by the driver's availability of central refueling and type of vehicle and route. Given that public stations remain essential to meeting decentralized refueling demand for other fleets as well as consumers, these findings have important implications for fleets that are both considering the adoption of CNG vehicles and the additional investment of hosting central refueling infrastructure at their base.

Suggested Citation

  • Kelley, Scott & Kuby, Michael, 2017. "Decentralized refueling of compressed natural gas (CNG) fleet vehicles in Southern California," Energy Policy, Elsevier, vol. 109(C), pages 350-359.
  • Handle: RePEc:eee:enepol:v:109:y:2017:i:c:p:350-359
    DOI: 10.1016/j.enpol.2017.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517304482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jimin & Melaina, Marc W., 2006. "Transition to hydrogen-based transportation in China: Lessons learned from alternative fuel vehicle programs in the United States and China," Energy Policy, Elsevier, vol. 34(11), pages 1299-1309, July.
    2. Melaina, Marc & Bremson, Joel, 2008. "Refueling availability for alternative fuel vehicle markets: Sufficient urban station coverage," Energy Policy, Elsevier, vol. 36(8), pages 3223-3231, August.
    3. Corts, Kenneth S., 2010. "Building out alternative fuel retail infrastructure: Government fleet spillovers in E85," Journal of Environmental Economics and Management, Elsevier, vol. 59(3), pages 219-234, May.
    4. Nesbitt, Kevin & Sperling, Daniel, 1998. "Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets," University of California Transportation Center, Working Papers qt0q6053j9, University of California Transportation Center.
    5. Golob, Thomas F. & Torous, Jane & Bradley, Mark & Brownstone, David & Crane, Soheila Soltani & Bunch, David S., 1997. "Commercial fleet demand for alternative-fuel vehicles in California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 219-233, May.
    6. Kelley, Scott & Kuby, Michael, 2013. "On the way or around the corner? Observed refueling choices of alternative-fuel drivers in Southern California," Journal of Transport Geography, Elsevier, vol. 33(C), pages 258-267.
    7. Flynn, Peter C., 2002. "Commercializing an alternate vehicle fuel: lessons learned from natural gas for vehicles," Energy Policy, Elsevier, vol. 30(7), pages 613-619, June.
    8. Nesbitt, Kevin & Sperling, Daniel, 2001. "Fleet Purchase Behavior: Decision Processes and Implications for New Vehicle Technologies and Fuels," Institute of Transportation Studies, Working Paper Series qt15k63162, Institute of Transportation Studies, UC Davis.
    9. Melaina, Marc W & Bremson, Joel, 2008. "Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage," Institute of Transportation Studies, Working Paper Series qt8ng1g4rf, Institute of Transportation Studies, UC Davis.
    10. P Plummer & R Haining & E Sheppard, 1998. "Spatial Pricing in Interdependent Markets: Testing Assumptions and Modeling Price Variation. A Case Study of Gasoline Retailing in St Cloud, Minnesota," Environment and Planning A, , vol. 30(1), pages 67-84, January.
    11. Oded Berman & Richard C. Larson & Nikoletta Fouska, 1992. "Optimal Location of Discretionary Service Facilities," Transportation Science, INFORMS, vol. 26(3), pages 201-211, August.
    12. Nesbitt, Kevin & Sperling, Daniel, 1998. "Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets," Institute of Transportation Studies, Working Paper Series qt07c9h9cd, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelley, Scott & Krafft, Aimee & Kuby, Michael & Lopez, Oscar & Stotts, Rhian & Liu, Jingteng, 2020. "How early hydrogen fuel cell vehicle adopters geographically evaluate a network of refueling stations in California," Journal of Transport Geography, Elsevier, vol. 89(C).
    2. Kuby, Michael, 2019. "The opposite of ubiquitous: How early adopters of fast-filling alt-fuel vehicles adapt to the sparsity of stations," Journal of Transport Geography, Elsevier, vol. 75(C), pages 46-57.
    3. Szymon Kuczyński & Krystian Liszka & Mariusz Łaciak & Andrzej Olijnyk & Adam Szurlej, 2019. "Experimental Investigations and Operational Performance Analysis on Compressed Natural Gas Home Refueling System (CNG-HRS)," Energies, MDPI, vol. 12(23), pages 1-15, November.
    4. Rodrigues Teixeira, Ana Carolina & Machado, Pedro Gerber & Borges, Raquel Rocha & Felipe Brito, Thiago Luis & Moutinho dos Santos, Edmilson & Mouette, Dominique, 2021. "The use of liquefied natural gas as an alternative fuel in freight transport – Evidence from a driver's point of view," Energy Policy, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).
    2. Kuby, Michael, 2019. "The opposite of ubiquitous: How early adopters of fast-filling alt-fuel vehicles adapt to the sparsity of stations," Journal of Transport Geography, Elsevier, vol. 75(C), pages 46-57.
    3. Kelley, Scott & Kuby, Michael, 2013. "On the way or around the corner? Observed refueling choices of alternative-fuel drivers in Southern California," Journal of Transport Geography, Elsevier, vol. 33(C), pages 258-267.
    4. Zhang, Yong & Jiang, Yunjian & Rui, Weina & Thompson, Russell G., 2019. "Analyzing truck fleets’ acceptance of alternative fuel freight vehicles in China," Renewable Energy, Elsevier, vol. 134(C), pages 1148-1155.
    5. Alali, Layla & Niesten, Eva & Gagliardi, Dimitri, 2022. "The impact of UK financial incentives on the adoption of electric fleets: The moderation effect of GDP change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 200-220.
    6. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    7. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    8. Farrell, Alexander E. & Keith, David W. & Corbett, James J., 2003. "A strategy for introducing hydrogen into transportation," Energy Policy, Elsevier, vol. 31(13), pages 1357-1367, October.
    9. Melaina, Marc W, 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Institute of Transportation Studies, Working Paper Series qt8501255w, Institute of Transportation Studies, UC Davis.
    10. Trinko, David & Horesh, Noah & Porter, Emily & Dunckley, Jamie & Miller, Erika & Bradley, Thomas, 2023. "Transportation and electricity systems integration via electric vehicle charging-as-a-service: A review of techno-economic and societal benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    11. Campíñez-Romero, Severo & Colmenar-Santos, Antonio & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2018. "A hydrogen refuelling stations infrastructure deployment for cities supported on fuel cell taxi roll-out," Energy, Elsevier, vol. 148(C), pages 1018-1031.
    12. Scott Kelley, 2018. "Driver Use and Perceptions of Refueling Stations Near Freeways in a Developing Infrastructure for Alternative Fuel Vehicles," Social Sciences, MDPI, vol. 7(11), pages 1-18, November.
    13. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.
    14. Williams, Brett D, 2010. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management," University of California Transportation Center, Working Papers qt15f9495j, University of California Transportation Center.
    15. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    16. Zhao, Jimin & Melaina, Marc W., 2006. "Transition to hydrogen-based transportation in China: Lessons learned from alternative fuel vehicle programs in the United States and China," Energy Policy, Elsevier, vol. 34(11), pages 1299-1309, July.
    17. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt4kv151dp, Institute of Transportation Studies, UC Davis.
    18. Melaina, Marc W., 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Energy Policy, Elsevier, vol. 35(10), pages 4919-4934, October.
    19. Wang, Ying-Wei & Lin, Chuah-Chih, 2013. "Locating multiple types of recharging stations for battery-powered electric vehicle transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 76-87.
    20. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt16k010cq, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:109:y:2017:i:c:p:350-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.