IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v69y2018icp221-233.html
   My bibliography  Save this article

Examining spatial relationships between crashes and the built environment: A geographically weighted regression approach

Author

Listed:
  • Huang, Yuan
  • Wang, Xiaoguang
  • Patton, David

Abstract

A better understanding of the relationships between vehicle crashes and the built environment is an important step in improving crash prediction and providing sound policy recommendations that could reduce the occurrence or severity of crashes. Global statistical models are widely used to explore the relationships between vehicle crashes and the built environment, but these models do not incorporate a spatial component and are unable to deal with the issues of spatial autocorrelation and spatial non-stationarity. Our research utilizes a geographically weighted regression (GWR) model to explore the relationships between crashes and the built environment in the context of the Detroit region in Michigan. We find that the relationships between the built environment and crashes are spatially non-stationary: both the strength and the direction of their relationships differ over space. Our study also identifies several built environment variables, such as commercial use percentage, local road mileage percentage, and intersection density, that have relatively stable relationships with crashes. Our research demonstrates the feasibility and value of using spatial models in traffic, transportation, and land use research.

Suggested Citation

  • Huang, Yuan & Wang, Xiaoguang & Patton, David, 2018. "Examining spatial relationships between crashes and the built environment: A geographically weighted regression approach," Journal of Transport Geography, Elsevier, vol. 69(C), pages 221-233.
  • Handle: RePEc:eee:jotrge:v:69:y:2018:i:c:p:221-233
    DOI: 10.1016/j.jtrangeo.2018.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692317306373
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2018.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Selby, Brent & Kockelman, Kara M., 2013. "Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 29(C), pages 24-32.
    2. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    3. Antonio Páez & Steven Farber & David Wheeler, 2011. "A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships," Environment and Planning A, , vol. 43(12), pages 2992-3010, December.
    4. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    5. Song, J.J. & Ghosh, M. & Miaou, S. & Mallick, B., 2006. "Bayesian multivariate spatial models for roadway traffic crash mapping," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 246-273, January.
    6. David Wheeler & Michael Tiefelsdorf, 2005. "Multicollinearity and correlation among local regression coefficients in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 7(2), pages 161-187, June.
    7. Ernesto Calvo & Marcelo Escolar, 2003. "The Local Voter: A Geographically Weighted Approach to Ecological Inference," American Journal of Political Science, John Wiley & Sons, vol. 47(1), pages 189-204, January.
    8. Wang, Chih-Hao & Chen, Na, 2017. "A geographically weighted regression approach to investigating the spatially varied built-environment effects on community opportunity," Journal of Transport Geography, Elsevier, vol. 62(C), pages 136-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleftheria Kontou & Noreen McDonald, 2021. "Associating ridesourcing with road safety outcomes: Insights from Austin, Texas," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
    2. Zeyang Cheng & Zhenshan Zu & Jian Lu, 2018. "Traffic Crash Evolution Characteristic Analysis and Spatiotemporal Hotspot Identification of Urban Road Intersections," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    3. Yang Liu & Yanjie Ji & Zhuangbin Shi & Liangpeng Gao, 2018. "The Influence of the Built Environment on School Children’s Metro Ridership: An Exploration Using Geographically Weighted Poisson Regression Models," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    4. Jonathan Stiles & Yuchen Li & Harvey J Miller, 2022. "How does street space influence crash frequency? An analysis using segmented street view imagery," Environment and Planning B, , vol. 49(9), pages 2467-2483, November.
    5. Wu, Peijie & Chen, Tianyi & Diew Wong, Yiik & Meng, Xianghai & Wang, Xueqin & Liu, Wei, 2023. "Exploring key spatio-temporal features of crash risk hot spots on urban road network: A machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    6. Obelheiro, Marta Rodrigues & da Silva, Alan Ricardo & Nodari, Christine Tessele & Cybis, Helena Beatriz Bettella & Lindau, Luis Antonio, 2020. "A new zone system to analyze the spatial relationships between the built environment and traffic safety," Journal of Transport Geography, Elsevier, vol. 84(C).
    7. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    9. Keke Zhang & Shaohua Wang & Chengcheng Song & Sinan Zhang & Xia Liu, 2024. "Spatiotemporal Heterogeneity Analysis of Provincial Road Traffic Accidents and Its Influencing Factors in China," Sustainability, MDPI, vol. 16(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Löchl, Michael & Axhausen, Kay W., 2010. "Modelling hedonic residential rents for land use and transport simulation while considering spatial effects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(2), pages 39-63.
    2. Diana Gutiérrez Posada & Fernando Rubiera Morollón & Ana Viñuela, 2018. "Ageing Places in an Ageing Country: The Local Dynamics of the Elderly Population in Spain," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 109(3), pages 332-349, July.
    3. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    4. A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
    5. Li, Hengyun & Chen, Jason Li & Li, Gang & Goh, Carey, 2016. "Tourism and regional income inequality: Evidence from China," Annals of Tourism Research, Elsevier, vol. 58(C), pages 81-99.
    6. Olaru, Doina & Mulley, Corinne & Smith, Brett & Ma, Liang, 2017. "Policy-led selection of the most appropriate empirical model to estimate hedonic prices in the residential market," Journal of Transport Geography, Elsevier, vol. 62(C), pages 213-228.
    7. Wang, Chih-Hao & Chen, Na, 2017. "A geographically weighted regression approach to investigating the spatially varied built-environment effects on community opportunity," Journal of Transport Geography, Elsevier, vol. 62(C), pages 136-147.
    8. Stephen Matthews & Tse-Chuan Yang, 2012. "Mapping the results of local statistics," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(6), pages 151-166.
    9. Jane Rongerude & Mônica Haddad, 2016. "Cores and Peripheries: Spatial Analysis of Housing Choice Voucher Distribution in the San Francisco Bay Area Region, 2000--2010," Housing Policy Debate, Taylor & Francis Journals, vol. 26(3), pages 417-436, May.
    10. Zizi GOSCHIN, 2018. "Regional patterns of Romanian emigration. A Geographically Weighted Regression Model," Romanian Journal of Economics, Institute of National Economy, vol. 46(1(55)), pages 60-74, June.
    11. Chih-Hao Wang & Na Chen, 2021. "A multi-objective optimization approach to balancing economic efficiency and equity in accessibility to multi-use paths," Transportation, Springer, vol. 48(4), pages 1967-1986, August.
    12. Selima Sultana & Nastaran Pourebrahim & Hyojin Kim, 2018. "Household Energy Expenditures in North Carolina: A Geographically Weighted Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    13. Christos Agiakloglou & Cleon Tsimbos & Apostolos Tsimpanos, 2019. "Evidence of spurious results along with spatially autocorrelated errors in the context of geographically weighted regression for two independent SAR(1) processes," Empirical Economics, Springer, vol. 57(5), pages 1613-1631, November.
    14. Dongwoo Kang & Sandy Dall’erba, 2016. "Exploring the spatially varying innovation capacity of the US counties in the framework of Griliches’ knowledge production function: a mixed GWR approach," Journal of Geographical Systems, Springer, vol. 18(2), pages 125-157, April.
    15. Ning Wang & Chang-Lin Mei & Xiao-Dong Yan, 2008. "Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique," Environment and Planning A, , vol. 40(4), pages 986-1005, April.
    16. Rojas, Carolina & Páez, Antonio & Barbosa, Olga & Carrasco, Juan, 2016. "Accessibility to urban green spaces in Chilean cities using adaptive thresholds," Journal of Transport Geography, Elsevier, vol. 57(C), pages 227-240.
    17. Helbich, Marco & Böcker, Lars & Dijst, Martin, 2014. "Geographic heterogeneity in cycling under various weather conditions: evidence from Greater Rotterdam," Journal of Transport Geography, Elsevier, vol. 38(C), pages 38-47.
    18. Ingram, Matthew C. & Marchesini da Costa, Marcelo, 2019. "Political geography of violence: Municipal politics and homicide in Brazil," World Development, Elsevier, vol. 124(C), pages 1-1.
    19. Pulugurtha, Srinivas S. & Mathew, Sonu, 2021. "Modeling AADT on local functionally classified roads using land use, road density, and nearest nonlocal road data," Journal of Transport Geography, Elsevier, vol. 93(C).
    20. Ruaa Al Juboori & Divya S. Subramaniam & Leslie Hinyard & J. S. Onésimo Sandoval, 2023. "Unveiling Spatial Associations between COVID-19 Severe Health Index, Racial/Ethnic Composition, and Community Factors in the United States," IJERPH, MDPI, vol. 20(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:69:y:2018:i:c:p:221-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.