IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p9102-d1503087.html
   My bibliography  Save this article

Modeling the Causes of Urban Traffic Crashes: Accounting for Spatiotemporal Instability in Cities

Author

Listed:
  • Hongwen Xia

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
    Research Institute of Highway Ministry of Transport, Beijing 100088, China
    Key Laboratory of Operation Safety Technology on Transport Vehicles, Beijing 100088, China)

  • Rengkui Liu

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Wei Zhou

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    Key Laboratory of Operation Safety Technology on Transport Vehicles, Beijing 100088, China)

  • Wenhui Luo

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    Key Laboratory of Operation Safety Technology on Transport Vehicles, Beijing 100088, China)

Abstract

Traffic crashes have become one of the key public health issues, triggering significant apprehension among citizens and urban authorities. However, prior studies have often been limited by their inability to fully capture the dynamic and complex nature of spatiotemporal instability in urban traffic crashes, typically focusing on static or purely spatial effects. Addressing this gap, our study employs a novel methodological framework that integrates an Integrated Nested Laplace Approximation (INLA)-based Stochastic Partial Differential Equation (SPDE) model with spatially adaptive graph structures, which enables the effective handling of vast and intricate geospatial data while accounting for spatiotemporal instability. This approach represents a significant advancement over conventional models, which often fail to account for the fluid interplay between time-varying weather conditions, geographical attributes, and crash severity. We applied this methodology to analyze traffic crashes across three major U.S. cities—New York, Los Angeles, and Houston—using comprehensive crash data from 2016 to 2019. Our findings reveal city-specific disparities in the factors influencing severe traffic crashes, which are defined as incidents resulting in at least one person sustaining serious injury or death. Despite some universal trends, such as the risk-enhancing effect of cold weather and pedestrian crossings, we find marked differences across cities in relation to factors like temperature, precipitation, and the presence of certain traffic facilities. Additionally, the adjustment observed in the spatiotemporal standard deviations, with values such as 0.85 for New York and 0.471 for Los Angeles, underscores the varying levels of annual temporal instability across cities, indicating that the fluctuation in crash severity factors over time differs markedly among cities. These results underscore the limitations of traditional modeling approaches, demonstrating the superiority of our spatiotemporal method in capturing the heterogeneity of urban traffic crashes. This work has important policy implications, suggesting a need for tailored, location-specific strategies to improve traffic safety, thereby aiding authorities in better resource allocation and strategic planning.

Suggested Citation

  • Hongwen Xia & Rengkui Liu & Wei Zhou & Wenhui Luo, 2024. "Modeling the Causes of Urban Traffic Crashes: Accounting for Spatiotemporal Instability in Cities," Sustainability, MDPI, vol. 16(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9102-:d:1503087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/9102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/9102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Helai & Song, Bo & Xu, Pengpeng & Zeng, Qiang & Lee, Jaeyoung & Abdel-Aty, Mohamed, 2016. "Macro and micro models for zonal crash prediction with application in hot zones identification," Journal of Transport Geography, Elsevier, vol. 54(C), pages 248-256.
    2. Huang, Yuan & Wang, Xiaoguang & Patton, David, 2018. "Examining spatial relationships between crashes and the built environment: A geographically weighted regression approach," Journal of Transport Geography, Elsevier, vol. 69(C), pages 221-233.
    3. Xie, Zhixiao & Yan, Jun, 2013. "Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach," Journal of Transport Geography, Elsevier, vol. 31(C), pages 64-71.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Peijie & Chen, Tianyi & Diew Wong, Yiik & Meng, Xianghai & Wang, Xueqin & Liu, Wei, 2023. "Exploring key spatio-temporal features of crash risk hot spots on urban road network: A machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    2. Eleftheria Kontou & Noreen McDonald, 2021. "Associating ridesourcing with road safety outcomes: Insights from Austin, Texas," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
    3. Ghadiri, Mehdi & Rassafi, Amir Abbas & Mirbaha, Babak, 2019. "The effects of traffic zoning with regular geometric shapes on the precision of trip production models," Journal of Transport Geography, Elsevier, vol. 78(C), pages 150-159.
    4. Yaxin Fan & Xinyan Zhu & Bing She & Wei Guo & Tao Guo, 2018. "Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
    5. Wang, Cheng & Wang, Gang & Guo, Ziru & Dai, Lingjun & Liu, Hongyu & Li, Yufeng & Chen, Hao & Zhao, Yongxiang & Zhang, Yanan & Cheng, Hai, 2020. "Effects of land-use change on the distribution of the wintering red-crowned crane (Grus japonensis) in the coastal area of northern Jiangsu Province, China," Land Use Policy, Elsevier, vol. 90(C).
    6. Mert Ersen & Ali Hakan Büyüklü & Semra Taşabat Erpolat, 2021. "Analysis of Fatal and Injury Traffic Accidents in Istanbul Sarıyer District with Spatial Statistics Methods," Sustainability, MDPI, vol. 13(19), pages 1-39, October.
    7. Qing Ye & Yi Li & Wenzhe Shen & Zhaoze Xuan, 2023. "Division and Analysis of Accident-Prone Areas near Highway Ramps Based on Spatial Autocorrelation," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    8. Vennis Hong & Sage K Iwamoto & Rei Goto & Sean Young & Sukhawadee Chomduangthip & Natirath Weeranakin & Akihiro Nishi, 2020. "Socio-demographic determinants of motorcycle speeding in Maha Sarakham, Thailand," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-11, December.
    9. Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
    10. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    11. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    12. Keke Zhang & Shaohua Wang & Chengcheng Song & Sinan Zhang & Xia Liu, 2024. "Spatiotemporal Heterogeneity Analysis of Provincial Road Traffic Accidents and Its Influencing Factors in China," Sustainability, MDPI, vol. 16(17), pages 1-17, August.
    13. Tianzheng Xiao & Huapu Lu & Jianyu Wang & Katrina Wang, 2021. "Predicting and Interpreting Spatial Accidents through MDLSTM," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    14. Delso, Javier & Martín, Belén & Ortega, Emilio, 2018. "A new procedure using network analysis and kernel density estimations to evaluate the effect of urban configurations on pedestrian mobility. The case study of Vitoria –Gasteiz," Journal of Transport Geography, Elsevier, vol. 67(C), pages 61-72.
    15. Ke Nie & Zhensheng Wang & Qingyun Du & Fu Ren & Qin Tian, 2015. "A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    16. Rishuang Sun & Chi Zhang & Yujie Xiang & Lei Hou & Bo Wang, 2022. "Identification Method for Crash-Prone Sections of Mountain Highway under Complex Weather Conditions," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    17. Zeng, Qiang & Wen, Huiying & Huang, Helai & Wang, Jie & Lee, Jinwoo, 2020. "Analysis of crash frequency using a Bayesian underreporting count model with spatial correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    18. Loidl, Martin & Traun, Christoph & Wallentin, Gudrun, 2016. "Spatial patterns and temporal dynamics of urban bicycle crashes—A case study from Salzburg (Austria)," Journal of Transport Geography, Elsevier, vol. 52(C), pages 38-50.
    19. Miao, Congcong & Chen, Xiang & Zhang, Chuanrong, 2024. "Assessing network-based traffic crash risk using prospective space-time scan statistic method," Journal of Transport Geography, Elsevier, vol. 119(C).
    20. Shenjun Yao & Jinzi Wang & Lei Fang & Jianping Wu, 2018. "Identification of Vehicle-Pedestrian Collision Hotspots at the Micro-Level Using Network Kernel Density Estimation and Random Forests: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 10(12), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9102-:d:1503087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.