Evidence of spurious results along with spatially autocorrelated errors in the context of geographically weighted regression for two independent SAR(1) processes
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-018-1510-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- David Wheeler & Michael Tiefelsdorf, 2005. "Multicollinearity and correlation among local regression coefficients in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 7(2), pages 161-187, June.
- David C Wheeler, 2009. "Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso," Environment and Planning A, , vol. 41(3), pages 722-742, March.
- Clive Granger & Namwon Hyung & Yongil Jeon, 2001.
"Spurious regressions with stationary series,"
Applied Economics, Taylor & Francis Journals, vol. 33(7), pages 899-904.
- Granger, Clive W.J. & Hyung, Namwon & Jeon, Yongil, 1998. "Spurious Regressions with Stationary Series," University of California at San Diego, Economics Working Paper Series qt7r3353t8, Department of Economics, UC San Diego.
- A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
- David Wheeler & Catherine Calder, 2007. "An assessment of coefficient accuracy in linear regression models with spatially varying coefficients," Journal of Geographical Systems, Springer, vol. 9(2), pages 145-166, June.
- Manfred M. Fischer & Arthur Getis (ed.), 2010. "Handbook of Applied Spatial Analysis," Springer Books, Springer, number 978-3-642-03647-7, February.
- Antonio Páez & Steven Farber & David Wheeler, 2011. "A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships," Environment and Planning A, , vol. 43(12), pages 2992-3010, December.
- David C Wheeler, 2007. "Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression," Environment and Planning A, , vol. 39(10), pages 2464-2481, October.
- Steven Farber & Antonio Páez, 2007. "A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations," Journal of Geographical Systems, Springer, vol. 9(4), pages 371-396, December.
- Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
- Christos Agiakloglou, 2013. "Resolving spurious regressions and serially correlated errors," Empirical Economics, Springer, vol. 45(3), pages 1361-1366, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
- Geniaux, Ghislain & Martinetti, Davide, 2018. "A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 74-85.
- Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
- Antonio Páez & Steven Farber & David Wheeler, 2011. "A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships," Environment and Planning A, , vol. 43(12), pages 2992-3010, December.
- Wenjie Wu & Guanpeng Dong & Wenzhong Zhang, 2017. "The puzzling heterogeneity of amenity capitalization effects on land markets," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 135-153, March.
- David C Wheeler, 2009. "Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso," Environment and Planning A, , vol. 41(3), pages 722-742, March.
- Olaru, Doina & Mulley, Corinne & Smith, Brett & Ma, Liang, 2017. "Policy-led selection of the most appropriate empirical model to estimate hedonic prices in the residential market," Journal of Transport Geography, Elsevier, vol. 62(C), pages 213-228.
- Löchl, Michael & Axhausen, Kay W., 2010. "Modelling hedonic residential rents for land use and transport simulation while considering spatial effects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(2), pages 39-63.
- repec:rre:publsh:v:51:y:2021:i:2 is not listed on IDEAS
- Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).
- M. Bárcena & P. Menéndez & M. Palacios & F. Tusell, 2014. "Alleviating the effect of collinearity in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 16(4), pages 441-466, October.
- Dongwoo Kang & Sandy Dall’erba, 2016. "Exploring the spatially varying innovation capacity of the US counties in the framework of Griliches’ knowledge production function: a mixed GWR approach," Journal of Geographical Systems, Springer, vol. 18(2), pages 125-157, April.
- Wang, Kun & Gong, Qiang & Fu, Xiaowen & Fan, Xingli, 2014. "Frequency and aircraft size dynamics in a concentrated growth market: The case of the Chinese domestic market," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 50-58.
- Bo Pieter Johannes Andree & Francisco Blasques & Eric Koomen, 2017. "Smooth Transition Spatial Autoregressive Models," Tinbergen Institute Discussion Papers 17-050/III, Tinbergen Institute.
- Redfearn, Christian L., 2009. "How informative are average effects? Hedonic regression and amenity capitalization in complex urban housing markets," Regional Science and Urban Economics, Elsevier, vol. 39(3), pages 297-306, May.
- Chih-Hao Wang & Na Chen, 2021. "A multi-objective optimization approach to balancing economic efficiency and equity in accessibility to multi-use paths," Transportation, Springer, vol. 48(4), pages 1967-1986, August.
- McCallum, Bennett T., 2010.
"Is the spurious regression problem spurious?,"
Economics Letters, Elsevier, vol. 107(3), pages 321-323, June.
- Bennett T. McCallum, 2010. "Is the Spurious Regression Problem Spurious?," NBER Working Papers 15690, National Bureau of Economic Research, Inc.
- Diana Gutiérrez Posada & Fernando Rubiera Morollón & Ana Viñuela, 2018. "Ageing Places in an Ageing Country: The Local Dynamics of the Elderly Population in Spain," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 109(3), pages 332-349, July.
- Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014.
"Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria,"
Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
- Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2013. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Tinbergen Institute Discussion Papers 13-171/VIII, Tinbergen Institute.
- Sy, Oumar & Zaman, Ashraf Al, 2020. "Is the presidential premium spurious?," Journal of Empirical Finance, Elsevier, vol. 56(C), pages 94-104.
- Noriega Antonio E. & Ventosa-Santaulària Daniel, 2006.
"Spurious Regression and Econometric Trends,"
Working Papers
2006-05, Banco de México.
- Antonio E. Noriega & School of Economics, University of Guanajuato & Daniel Ventosa-Santaulà ria & School of Economics, University of Guanajuato, 2006. "Spurious regression and econometric trends," Computing in Economics and Finance 2006 151, Society for Computational Economics.
More about this item
Keywords
Geographically weighted regression; Spurious regression; Stationary spatial autoregressive SAR(1) processes; Spatially autocorrelated errors;All these keywords.
JEL classification:
- C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:57:y:2019:i:5:d:10.1007_s00181-018-1510-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.