IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v62y2017icp92-97.html
   My bibliography  Save this article

Constructing a routable retrospective transit timetable from a real-time vehicle location feed and GTFS

Author

Listed:
  • Wessel, Nate
  • Allen, Jeff
  • Farber, Steven

Abstract

We describe a method for retroactively improving the accuracy of a General Transit Feed Specification (GTFS) package by using a real-time vehicle location data set provided by the transit agency. Once modified, the GTFS package contains the observed rather than the scheduled transit operations and can be used in research assessing network performance, reliability and accessibility. We offer a case study using data from the Toronto Transit Commission and find that substantial aggregate accessibility differences exist between scheduled and observed services. This ‘error’ in the scheduled GTFS data may have implications for many types of measurements commonly derived from GTFS data.

Suggested Citation

  • Wessel, Nate & Allen, Jeff & Farber, Steven, 2017. "Constructing a routable retrospective transit timetable from a real-time vehicle location feed and GTFS," Journal of Transport Geography, Elsevier, vol. 62(C), pages 92-97.
  • Handle: RePEc:eee:jotrge:v:62:y:2017:i:c:p:92-97
    DOI: 10.1016/j.jtrangeo.2017.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692317300388
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2017.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ahmed El-Geneidy & Ron Buliung & Ehab Diab & Dea van Lierop & Myriam Langlois & Alexander Legrain, 2016. "Non-stop equity: Assessing daily intersections between transit accessibility and social disparity across the Greater Toronto and Hamilton Area (GTHA)," Environment and Planning B, , vol. 43(3), pages 540-560, May.
    2. Watkins, Kari Edison & Ferris, Brian & Borning, Alan & Rutherford, G. Scott & Layton, David, 2011. "Where Is My Bus? Impact of mobile real-time information on the perceived and actual wait time of transit riders," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 839-848, October.
    3. Owen, Andrew & Levinson, David M., 2015. "Modeling the commute mode share of transit using continuous accessibility to jobs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 110-122.
    4. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    5. Salonen, Maria & Toivonen, Tuuli, 2013. "Modelling travel time in urban networks: comparable measures for private car and public transport," Journal of Transport Geography, Elsevier, vol. 31(C), pages 143-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Guozheng & Wang, Dianhai & Cai, Zhengyi & Zeng, Jiaqi, 2024. "Competitiveness of public transit considering travel time reliability: A case study for commuter trips in Hangzhou, China," Journal of Transport Geography, Elsevier, vol. 114(C).
    2. Mayaud, Jerome & Tran, Martino & Pereira, Rafael Henrique Moreas & Nuttall, Rohan, 2018. "Future access to essential services in a growing smart city: The case of Surrey, British Columbia," SocArXiv pej8u, Center for Open Science.
    3. Braga, Carlos Kaue V. & Loureiro, Carlos Felipe Grangeiro & Pereira, Rafael H.M., 2023. "Evaluating the impact of public transport travel time inaccuracy and variability on socio-spatial inequalities in accessibility," Journal of Transport Geography, Elsevier, vol. 109(C).
    4. Lee, Jinhyung & Miller, Harvey J., 2020. "Robust accessibility: Measuring accessibility based on travelers' heterogeneous strategies for managing travel time uncertainty," Journal of Transport Geography, Elsevier, vol. 86(C).
    5. Javanmard, Reyhane & Lee, Jinhyung & Kim, Kyusik & Park, Jinwoo & Diab, Ehab, 2024. "Evaluating the impacts of supply-demand dynamics and distance decay effects on public transit project assessment: A study of healthcare accessibility and inequalities," Journal of Transport Geography, Elsevier, vol. 116(C).
    6. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.
    7. Liu, Luyu & Porr, Adam & Miller, Harvey J., 2024. "Measuring the impacts of disruptions on public transit accessibility and reliability," Journal of Transport Geography, Elsevier, vol. 114(C).
    8. Nichols, Aaron & Ryan, Jean & Palmqvist, Carl-William, 2024. "The importance of recurring public transport delays for accessibility and mode choice," Journal of Transport Geography, Elsevier, vol. 115(C).
    9. Allen, Jeff & Farber, Steven, 2019. "Sizing up transport poverty: A national scale accounting of low-income households suffering from inaccessibility in Canada, and what to do about it," Transport Policy, Elsevier, vol. 74(C), pages 214-223.
    10. Klar, Ben & Lee, Jinhyung & Long, Jed A. & Diab, Ehab, 2023. "The impacts of accessibility measure choice on public transit project evaluation: A comparative study of cumulative, gravity-based, and hybrid approaches," Journal of Transport Geography, Elsevier, vol. 106(C).
    11. Mayaud, Jerome & Anderson, Sam & Tran, Martino & Radic, Valentina, 2018. "Insights from self-organizing maps for predicting accessibility demand for healthcare infrastructure," SocArXiv yngx4, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wessel, Nate, 2019. "Accessibility Beyond the Schedule," SocArXiv c4yvx, Center for Open Science.
    2. Goliszek Sławomir, 2022. "The potential accessibility to workplaces and working-age population by means of public and private car transport in Szczecin," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 31-41, January.
    3. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.
    4. Karner, Alex, 2018. "Assessing public transit service equity using route-level accessibility measures and public data," Journal of Transport Geography, Elsevier, vol. 67(C), pages 24-32.
    5. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.
    6. Goliszek Sławomir & Połom Marcin & Duma Patryk, 2020. "Potential and cumulative accessibility of workplaces by public transport in Szczecin," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 50(50), pages 133-146, December.
    7. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    8. David Levinson & Hao Wu, 2020. "Towards a general theory of access," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    9. Lussier-Tomaszewski, P. & Boisjoly, G., 2021. "Thinking regional and acting local: Assessing the joint influence of local and regional accessibility on commute mode in Montreal, Canada," Journal of Transport Geography, Elsevier, vol. 90(C).
    10. Saghapour, Tayebeh & Moridpour, Sara & Thompson, Russell G., 2016. "Public transport accessibility in metropolitan areas: A new approach incorporating population density," Journal of Transport Geography, Elsevier, vol. 54(C), pages 273-285.
    11. Allen, Jeff & Farber, Steven, 2019. "A measure of competitive access to destinations for comparing across multiple study regions," SocArXiv 8yf7q, Center for Open Science.
    12. Wessel, Nate & Farber, Steven, 2018. "On the Accuracy of Schedule-Based GTFS for Measuring Accessibility," SocArXiv hzgpd, Center for Open Science.
    13. Xu, Wangtu (Ato) & Li, Yongling & Wang, Hui, 2016. "Transit accessibility for commuters considering the demand elasticities of distance and transfer," Journal of Transport Geography, Elsevier, vol. 56(C), pages 138-156.
    14. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    15. Ruqin Yang & Yaolin Liu & Yanfang Liu & Hui Liu & Wenxia Gan, 2019. "Comprehensive Public Transport Service Accessibility Index—A New Approach Based on Degree Centrality and Gravity Model," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    16. Moyano, Amparo & Martínez, Héctor S. & Coronado, José M., 2018. "From network to services: A comparative accessibility analysis of the Spanish high-speed rail system," Transport Policy, Elsevier, vol. 63(C), pages 51-60.
    17. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    18. Da Silva, Diego & Klumpenhouwer, Willem & Karner, Alex & Robinson, Mitchell & Liu, Rick & Shalaby, Amer, 2022. "Living on a fare: Modeling and quantifying the effects of fare budgets on transit access and equity," Journal of Transport Geography, Elsevier, vol. 101(C).
    19. Allen, Jeff & Farber, Steven, 2019. "Sizing up transport poverty: A national scale accounting of low-income households suffering from inaccessibility in Canada, and what to do about it," Transport Policy, Elsevier, vol. 74(C), pages 214-223.
    20. Ryan, Jean & Pereira, Rafael H.M. & Andersson, Magnus, 2023. "Accessibility and space-time differences in when and how different groups (choose to) travel," Journal of Transport Geography, Elsevier, vol. 111(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:62:y:2017:i:c:p:92-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.