IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v83y2019icp227-239.html
   My bibliography  Save this article

Specialized governance and regional land-use outcomes: A spatial analysis of Florida community development districts

Author

Listed:
  • Deslatte, Aaron
  • Scott, Tyler A.
  • Carter, David P.

Abstract

Specialized governance literature tends to approach special district differences at a surface level, rarely delving into consequential distinctions between districts types or their implications for policy outcomes. This article offers a step towards addressing these limitations by examining the land use impacts of an innovation in local government form referred to as “multipurpose development districts.” The article builds from a theory of local government formation to examine how Florida development districts – formally referred to within the state as community development districts (CDDs) – impact regional development patterns. Combining spatial data on land-cover change and CDD boundaries with nonparametric and Bayesian modeling approaches, the article provides a novel examination of CDDs’ influence on urban sprawl over a 15-year period. The results suggest that private developers’ use of development district formation to finance development infrastructure contributes to development in unincorporated areas. However, because within-district sprawl is disincentivized and overall district siting remains subject to regional planning and zoning restrictions, CDDs cluster this growth in ways which mitigate the negative effects of urban sprawl. The findings hold important implications for understanding regional growth and development processes, as well as the realization of state-level growth management policy goals.

Suggested Citation

  • Deslatte, Aaron & Scott, Tyler A. & Carter, David P., 2019. "Specialized governance and regional land-use outcomes: A spatial analysis of Florida community development districts," Land Use Policy, Elsevier, vol. 83(C), pages 227-239.
  • Handle: RePEc:eee:lauspo:v:83:y:2019:i:c:p:227-239
    DOI: 10.1016/j.landusepol.2019.01.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837718313437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2019.01.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen B. Billings & Thomas G. Thibodeau, 2013. "Financing Residential Development with Special Districts," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 41(1), pages 131-163, March.
    2. Jan K. Brueckner, 2000. "Urban Sprawl: Diagnosis and Remedies," International Regional Science Review, , vol. 23(2), pages 160-171, April.
    3. Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
    4. Aligica, Paul Dragos & Tarko, Vlad, 2013. "Co-Production, Polycentricity, and Value Heterogeneity: The Ostroms’ Public Choice Institutionalism Revisited," American Political Science Review, Cambridge University Press, vol. 107(4), pages 726-741, November.
    5. Tyler A Scott & Tima Moldogaziev & Robert A Greer, 2018. "Drink what you can pay for: Financing infrastructure in a fragmented water system," Urban Studies, Urban Studies Journal Limited, vol. 55(13), pages 2821-2837, October.
    6. Camagni, Roberto & Gibelli, Maria Cristina & Rigamonti, Paolo, 2002. "Urban mobility and urban form: the social and environmental costs of different patterns of urban expansion," Ecological Economics, Elsevier, vol. 40(2), pages 199-216, February.
    7. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    8. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    9. Tyler A. Scott, 2018. "Flexible, collaborative, and meaningful? The case of the US coastal nonpoint pollution control program," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(2), pages 272-290, January.
    10. Mark Lubell & Richard C. Feiock & Edgar E. Ramirez De La Cruz, 2009. "Local Institutions and the Politics of Urban Growth," American Journal of Political Science, John Wiley & Sons, vol. 53(3), pages 649-665, July.
    11. Barry Kew & Brian D. Lee, 2013. "Measuring Sprawl across the Urban Rural Continuum Using an Amalgamated Sprawl Index," Sustainability, MDPI, vol. 5(5), pages 1-23, April.
    12. Richard B. Peiser, 1983. "The Economics of Municipal Utility Districts for Land Development," Land Economics, University of Wisconsin Press, vol. 59(1), pages 43-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deslatte, Aaron & Szmigiel-Rawska, Katarzyna & Tavares, António F. & Ślawska, Justyna & Karsznia, Izabela & Łukomska, Julita, 2022. "Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland," Land Use Policy, Elsevier, vol. 114(C).
    2. Meng Wang & Aleksandra Krstikj & Huan Liu, 2022. "Planning Compact City in Rapidly Growing Cities—An Estimation of the Effects of New-Type Urbanization Planning in Hangzhou City," Land, MDPI, vol. 11(11), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    2. Benedetto Manganelli & Beniamino Murgante & Lucia Saganeiti, 2020. "The Social Cost of Urban Sprinkling," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    3. John M. Humphreys, 2022. "Amplification in Time and Dilution in Space: Partitioning Spatiotemporal Processes to Assess the Role of Avian-Host Phylodiversity in Shaping Eastern Equine Encephalitis Virus Distribution," Geographies, MDPI, vol. 2(3), pages 1-16, July.
    4. Carlos Díaz-Avalos & Pablo Juan & Somnath Chaudhuri & Marc Sáez & Laura Serra, 2020. "Association between the New COVID-19 Cases and Air Pollution with Meteorological Elements in Nine Counties of New York State," IJERPH, MDPI, vol. 17(23), pages 1-18, December.
    5. Chien-Chou Chen & Guo-Jun Lo & Ta-Chien Chan, 2022. "Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-12, May.
    6. Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
    7. Chao Song & Yaode Wang & Xiu Yang & Yili Yang & Zhangying Tang & Xiuli Wang & Jay Pan, 2020. "Spatial and Temporal Impacts of Socioeconomic and Environmental Factors on Healthcare Resources: A County-Level Bayesian Local Spatiotemporal Regression Modeling Study of Hospital Beds in Southwest Ch," IJERPH, MDPI, vol. 17(16), pages 1-23, August.
    8. Ropo E. Ogunsakin & Themba G. Ginindza, 2022. "Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    9. Lucia Saganeiti & Antonella Favale & Angela Pilogallo & Francesco Scorza & Beniamino Murgante, 2018. "Assessing Urban Fragmentation at Regional Scale Using Sprinkling Indexes," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    10. Ali Arab, 2015. "Spatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros," IJERPH, MDPI, vol. 12(9), pages 1-13, August.
    11. Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
    12. Zongyuan Xia & Bo Tang & Long Qin & Huiguo Zhang & Xijian Hu, 2023. "Spatially Dependent Bayesian Modeling of Geostatistics Data and Its Application for Tuberculosis (TB) in China," Mathematics, MDPI, vol. 11(19), pages 1-15, October.
    13. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    14. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    15. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    16. Daniela Silva & Raquel Menezes & Ana Moreno & Ana Teles-Machado & Susana Garrido, 2024. "Environmental Effects on the Spatiotemporal Variability of Sardine Distribution Along the Portuguese Continental Coast," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 553-575, September.
    17. David Jiménez-Hernández & Víctor González-Calatayud & Ana Torres-Soto & Asunción Martínez Mayoral & Javier Morales, 2020. "Digital Competence of Future Secondary School Teachers: Differences According to Gender, Age, and Branch of Knowledge," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    18. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    19. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    20. Braulio-Gonzalo, Marta & Bovea, María D. & Jorge-Ortiz, Andrea & Juan, Pablo, 2021. "Which is the best-fit response variable for modelling the energy consumption of households? An analysis based on survey data," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:83:y:2019:i:c:p:227-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.