IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v157y2021ics0167947320302437.html
   My bibliography  Save this article

Fast Bayesian estimation of spatial count data models

Author

Listed:
  • Bansal, Prateek
  • Krueger, Rico
  • Graham, Daniel J.

Abstract

Spatial count data models are used to explain and predict the frequency of phenomena such as traffic accidents in geographically distinct entities such as census tracts or road segments. These models are typically estimated using Bayesian Markov chain Monte Carlo (MCMC) simulation methods, which, however, are computationally expensive and do not scale well to large datasets. Variational Bayes (VB), a method from machine learning, addresses the shortcomings of MCMC by casting Bayesian estimation as an optimisation problem instead of a simulation problem. Considering all these advantages of VB, a VB method is derived for posterior inference in negative binomial models with unobserved parameter heterogeneity and spatial dependence. Pólya-Gamma augmentation is used to deal with the non-conjugacy of the negative binomial likelihood and an integrated non-factorised specification of the variational distribution is adopted to capture posterior dependencies. The benefits of the proposed approach are demonstrated in a Monte Carlo study and an empirical application on estimating youth pedestrian injury counts in census tracts of New York City. The VB approach is around 45 to 50 times faster than MCMC on a regular eight-core processor in a simulation and an empirical study, while offering similar estimation and predictive accuracy. Conditional on the availability of computational resources, the embarrassingly parallel architecture of the proposed VB method can be exploited to further accelerate its estimation by up to 20 times.

Suggested Citation

  • Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302437
    DOI: 10.1016/j.csda.2020.107152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320302437
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
    3. Roger J. Marshall, 1991. "A Review of Methods for the Statistical Analysis of Spatial Patterns of Disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 154(3), pages 421-441, May.
    4. Glaser, Stephanie, 2017. "A review of spatial econometric models for count data," Hohenheim Discussion Papers in Business, Economics and Social Sciences 19-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    5. Ren, Qian & Banerjee, Sudipto & Finley, Andrew O. & Hodges, James S., 2011. "Variational Bayesian methods for spatial data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3197-3217, December.
    6. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    7. LeSage, James P. & Kelley Pace, R., 2007. "A matrix exponential spatial specification," Journal of Econometrics, Elsevier, vol. 140(1), pages 190-214, September.
    8. Zoltan J. Acs & Luc Anselin & Attila Varga, 2008. "Patents and Innovation Counts as Measures of Regional Production of New Knowledge," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 11, pages 135-151, Edward Elgar Publishing.
    9. Wei Wei & Leonhard Held, 2014. "Calibration tests for count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 787-805, December.
    10. Bansal, Prateek & Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H., 2020. "Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 124-142.
    11. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    12. Braun, Michael & McAuliffe, Jon, 2010. "Variational Inference for Large-Scale Models of Discrete Choice," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 324-335.
    13. Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Duncan Lee & Craig Anderson, 2023. "Delivering spatially comparable inference on the risks of multiple severities of respiratory disease from spatially misaligned disease count data," Biometrics, The International Biometric Society, vol. 79(3), pages 2691-2704, September.
    3. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    4. Zaouche, Mounia & Bode, Nikolai W.F., 2023. "Bayesian spatio-temporal models for mapping urban pedestrian traffic," Journal of Transport Geography, Elsevier, vol. 111(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daziano, Ricardo A., 2022. "Willingness to delay charging of electric vehicles," Research in Transportation Economics, Elsevier, vol. 94(C).
    2. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    3. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    4. F. S. Nathoo & A. Babul & A. Moiseev & N. Virji-Babul & M. F. Beg, 2014. "A variational Bayes spatiotemporal model for electromagnetic brain mapping," Biometrics, The International Biometric Society, vol. 70(1), pages 132-143, March.
    5. Rodrigues, Filipe, 2022. "Scaling Bayesian inference of mixed multinomial logit models to large datasets," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 1-17.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Bruno Jacobs & Dennis Fok & Bas Donkers, 2021. "Understanding Large-Scale Dynamic Purchase Behavior," Marketing Science, INFORMS, vol. 40(5), pages 844-870, September.
    8. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    9. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    10. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    11. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    12. Bansal, Prateek & Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H., 2020. "Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 124-142.
    13. Rico Krueger & Prateek Bansal & Michel Bierlaire & Ricardo A. Daziano & Taha H. Rashidi, 2019. "Variational Bayesian Inference for Mixed Logit Models with Unobserved Inter- and Intra-Individual Heterogeneity," Papers 1905.00419, arXiv.org, revised Jan 2020.
    14. Prateek Bansal & Rico Krueger & Michel Bierlaire & Ricardo A. Daziano & Taha H. Rashidi, 2019. "Bayesian Estimation of Mixed Multinomial Logit Models: Advances and Simulation-Based Evaluations," Papers 1904.03647, arXiv.org, revised Dec 2019.
    15. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    16. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    17. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    18. Nico Keilman, 2020. "Evaluating Probabilistic Population Forecasts," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 49-64.
    19. Asim Ansari & Yang Li & Jonathan Z. Zhang, 2018. "Probabilistic Topic Model for Hybrid Recommender Systems: A Stochastic Variational Bayesian Approach," Marketing Science, INFORMS, vol. 37(6), pages 987-1008, November.
    20. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.