IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i3p1150-1177.html
   My bibliography  Save this article

Multivariate hierarchical analysis of car crashes data considering a spatial network lattice

Author

Listed:
  • Andrea Gilardi
  • Jorge Mateu
  • Riccardo Borgoni
  • Robin Lovelace

Abstract

Road traffic casualties represent a hidden global epidemic, demanding evidence‐based interventions. This paper demonstrates a network lattice approach for identifying road segments of particular concern, based on a case study of a major city (Leeds, UK), in which 5862 crashes of different severities were recorded over an 8‐year period (2011–2018). We consider a family of Bayesian hierarchical models that include spatially structured and unstructured random effects to capture the dependencies between the severity levels. Results highlight roads that are more prone to collisions, relative to estimated traffic volumes, in the north‐west and south of city centre. We analyse the modifiable areal unit problem (MAUP), proposing a novel procedure to investigate the presence of MAUP on a network lattice. We conclude that our methods enable a reliable estimation of road safety levels to help identify ‘hotspots’ on the road network and to inform effective local interventions.

Suggested Citation

  • Andrea Gilardi & Jorge Mateu & Riccardo Borgoni & Robin Lovelace, 2022. "Multivariate hierarchical analysis of car crashes data considering a spatial network lattice," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1150-1177, July.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:3:p:1150-1177
    DOI: 10.1111/rssa.12823
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12823
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mardia, K. V., 1988. "Multi-dimensional multivariate Gaussian Markov random fields with application to image processing," Journal of Multivariate Analysis, Elsevier, vol. 24(2), pages 265-284, February.
    2. Dubin, Robin A, 1988. "Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 466-474, August.
    3. Areti Boulieri & Silvia Liverani & Kees Hoogh & Marta Blangiardo, 2017. "A space–time multivariate Bayesian model to analyse road traffic accidents by severity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 119-139, January.
    4. Riccardo Borgoni & Andrea Gilardi & Diego Zappa, 2021. "Assessing the Risk of Car Crashes in Road Networks," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 429-447, August.
    5. Suman Rakshit & Tilman Davies & M. Mehdi Moradi & Greg McSwiggan & Gopalan Nair & Jorge Mateu & Adrian Baddeley, 2019. "Fast Kernel Smoothing of Point Patterns on a Large Network using Two‐dimensional Convolution," International Statistical Review, International Statistical Institute, vol. 87(3), pages 531-556, December.
    6. Stephen Marshall & Jorge Gil & Karl Kropf & Martin Tomko & Lucas Figueiredo, 2018. "Street Network Studies: from Networks to Models and their Representations," Networks and Spatial Economics, Springer, vol. 18(3), pages 735-749, September.
    7. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    8. James S. Hodges & Bradley P. Carlin & Qiao Fan, 2003. "On the Precision of the Conditionally Autoregressive Prior in Spatial Models," Biometrics, The International Biometric Society, vol. 59(2), pages 317-322, June.
    9. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    10. Kirk, David S. & Cavalli, Nicolo & Brazil, Noli, 2020. "The implications of ridehailing for risky driving and road accident injuries and fatalities," Social Science & Medicine, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaouche, Mounia & Bode, Nikolai W.F., 2023. "Bayesian spatio-temporal models for mapping urban pedestrian traffic," Journal of Transport Geography, Elsevier, vol. 111(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsiotas, Dimitrios, 2021. "Drawing indicators of economic performance from network topology: The case of the interregional road transportation in Greece," Research in Transportation Economics, Elsevier, vol. 90(C).
    2. Volker Schmid & Leonhard Held, 2004. "Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data," Biometrics, The International Biometric Society, vol. 60(4), pages 1034-1042, December.
    3. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    4. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    5. Brian J. Reich & James S. Hodges, 2008. "Modeling Longitudinal Spatial Periodontal Data: A Spatially Adaptive Model with Tools for Specifying Priors and Checking Fit," Biometrics, The International Biometric Society, vol. 64(3), pages 790-799, September.
    6. Song, J.J. & Ghosh, M. & Miaou, S. & Mallick, B., 2006. "Bayesian multivariate spatial models for roadway traffic crash mapping," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 246-273, January.
    7. Susan M. Paddock & Terrance D. Savitsky, 2013. "Bayesian hierarchical semiparametric modelling of longitudinal post-treatment outcomes from open enrolment therapy groups," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 795-808, June.
    8. Gaëtan Montero & Geoffrey Caruso & Mohamed Hilal & Isabelle Thomas, 2023. "A partition-free spatial clustering that preserves topology: application to built-up density," Journal of Geographical Systems, Springer, vol. 25(1), pages 5-35, January.
    9. Areti Boulieri & Silvia Liverani & Kees Hoogh & Marta Blangiardo, 2017. "A space–time multivariate Bayesian model to analyse road traffic accidents by severity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 119-139, January.
    10. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.
    11. Cindy Xin Feng, 2015. "Bayesian joint modeling of correlated counts data with application to adverse birth outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1206-1222, June.
    12. Sain, Stephan R. & Cressie, Noel, 2007. "A spatial model for multivariate lattice data," Journal of Econometrics, Elsevier, vol. 140(1), pages 226-259, September.
    13. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.
    14. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    15. Baorui Han & Dazhi Sun & Xiaomei Yu & Wanlu Song & Lisha Ding, 2020. "Classification of Urban Street Networks Based on Tree-Like Network Features," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
    16. Wheeler, David C. & Hickson, DeMarc A. & Waller, Lance A., 2010. "Assessing local model adequacy in Bayesian hierarchical models using the partitioned deviance information criterion," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1657-1671, June.
    17. Gamerman, Dani & Moreira, Ajax R. B., 2004. "Multivariate spatial regression models," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 262-281, November.
    18. Pan, Chun & Cai, Bo & Wang, Lianming & Lin, Xiaoyan, 2014. "Bayesian semiparametric model for spatially correlated interval-censored survival data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 198-208.
    19. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    20. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:3:p:1150-1177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.