IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v35y2015i2p183-195.html
   My bibliography  Save this article

The Influence of Disease Risk on the Optimal Time Interval between Screens for the Early Detection of Cancer

Author

Listed:
  • James F. O’Mahony
  • Joost van Rosmalen
  • Nino A. Mushkudiani
  • Frans-Willem Goudsmit
  • Marinus J. C. Eijkemans
  • Eveline A. M. Heijnsdijk
  • Ewout W. Steyerberg
  • J. Dik F. Habbema

Abstract

The intervals between screens for the early detection of diseases such as breast and colon cancer suggested by screening guidelines are typically based on the average population risk of disease. With the emergence of ever more biomarkers for cancer risk prediction and the development of personalized medicine, there is a need for risk-specific screening intervals. The interval between successive screens should be shorter with increasing cancer risk. A risk-dependent optimal interval is ideally derived from a cost-effectiveness analysis using a validated simulation model. However, this is time-consuming and costly. We propose a simplified mathematical approach for the exploratory analysis of the implications of risk level on optimal screening interval. We develop a mathematical model of the optimal screening interval for breast cancer screening. We verified the results by programming the simplified model in the MISCAN-Breast microsimulation model and comparing the results. We validated the results by comparing them with the results of a full, published MISCAN-Breast cost-effectiveness model for a number of different risk levels. The results of both the verification and validation were satisfactory. We conclude that the mathematical approach can indicate the impact of disease risk on the optimal screening interval.

Suggested Citation

  • James F. O’Mahony & Joost van Rosmalen & Nino A. Mushkudiani & Frans-Willem Goudsmit & Marinus J. C. Eijkemans & Eveline A. M. Heijnsdijk & Ewout W. Steyerberg & J. Dik F. Habbema, 2015. "The Influence of Disease Risk on the Optimal Time Interval between Screens for the Early Detection of Cancer," Medical Decision Making, , vol. 35(2), pages 183-195, February.
  • Handle: RePEc:sae:medema:v:35:y:2015:i:2:p:183-195
    DOI: 10.1177/0272989X14528380
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X14528380
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X14528380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Shwartz, 1978. "A Mathematical Model Used to Analyze Breast Cancer Screening Strategies," Operations Research, INFORMS, vol. 26(6), pages 937-955, December.
    2. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    3. Julie Simmons Ivy, 2009. "Can we Do Better? Optimization Models for Breast Cancer Screening," Springer Optimization and Its Applications, in: H. Edwin Romeijn & Panos M. Pardalos (ed.), Handbook of Optimization in Medicine, chapter 2, pages 25-52, Springer.
    4. Rose Baker, 1998. "Use of a mathematical model to evaluate breast cancer screening policy," Health Care Management Science, Springer, vol. 1(2), pages 103-113, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolai Mühlberger & Gaby Sroczynski & Artemisa Gogollari & Beate Jahn & Nora Pashayan & Ewout Steyerberg & Martin Widschwendter & Uwe Siebert, 2021. "Cost effectiveness of breast cancer screening and prevention: a systematic review with a focus on risk-adapted strategies," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(8), pages 1311-1344, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    2. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    3. Christian Wernz & Yongjia Song & Danny R. Hughes, 2021. "How hospitals can improve their public quality metrics: a decision-theoretic model," Health Care Management Science, Springer, vol. 24(4), pages 702-715, December.
    4. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.
    5. Turgay Ayer, 2015. "Inverse optimization for assessing emerging technologies in breast cancer screening," Annals of Operations Research, Springer, vol. 230(1), pages 57-85, July.
    6. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    7. Chou-Chun Wu & Yiwen Cao & Sze-chuan Suen & Eugene Lin, 2024. "Examining chronic kidney disease screening frequency among diabetics: a POMDP approach," Health Care Management Science, Springer, vol. 27(3), pages 391-414, September.
    8. Michael Shwartz, 1992. "Validation of a Model of Breast Cancer Screening," Medical Decision Making, , vol. 12(3), pages 222-228, August.
    9. Nikolai Mühlberger & Gaby Sroczynski & Artemisa Gogollari & Beate Jahn & Nora Pashayan & Ewout Steyerberg & Martin Widschwendter & Uwe Siebert, 2021. "Cost effectiveness of breast cancer screening and prevention: a systematic review with a focus on risk-adapted strategies," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(8), pages 1311-1344, November.
    10. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    11. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    12. Dan Andrei Iancu & Nikolaos Trichakis & Do Young Yoon, 2021. "Monitoring with Limited Information," Management Science, INFORMS, vol. 67(7), pages 4233-4251, July.
    13. Jue Wang, 2016. "Minimizing the false alarm rate in systems with transient abnormality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 320-334, June.
    14. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    15. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    16. Sharareh Taghipour & Laurent N. Caudrelier & Anthony B. Miller & Bart Harvey, 2017. "Using Simulation to Model and Validate Invasive Breast Cancer Progression in Women in the Study and Control Groups of the Canadian National Breast Screening Studies I and II," Medical Decision Making, , vol. 37(2), pages 212-223, February.
    17. Li, Y. & Zhu, M. & Klein, R. & Kong, N., 2014. "Using a partially observable Markov chain model to assess colonoscopy screening strategies – A cohort study," European Journal of Operational Research, Elsevier, vol. 238(1), pages 313-326.
    18. Hui Zhang & Christian Wernz & Danny R. Hughes, 2018. "A Stochastic Game Analysis of Incentives and Behavioral Barriers in Chronic Disease Management," Service Science, INFORMS, vol. 10(3), pages 302-319, September.
    19. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.
    20. Mehmet A. Ergun & Ali Hajjar & Oguzhan Alagoz & Murtuza Rampurwala, 2022. "Optimal breast cancer risk reduction policies tailored to personal risk level," Health Care Management Science, Springer, vol. 25(3), pages 363-388, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:35:y:2015:i:2:p:183-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.