IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v126y2024ics030504832400029x.html
   My bibliography  Save this article

Integrated multi-product reverse supply chain design and disassembly line balancing under uncertainty

Author

Listed:
  • Hu, Peng
  • Chu, Feng
  • Dolgui, Alexandre
  • Chu, Chengbin
  • Liu, Ming

Abstract

End-of-life (EOL) product recycling has received increasing attention because of potential environmental, social and economic benefits. A well-designed reverse supply chain (RSC) can efficiently handle EOL products. As the critical activity in the RSC, the disassembly process decomposes collected EOL products into components to fulfill the demands of remanufacturing plants. Efficiently coordinating RSC design and disassembly line balancing decisions may improve the whole system performance significantly, especially when facing multiple EOL products and uncertainty. This paper investigates a novel integrated RSC design and disassembly line balancing problem to handle multiple EOL products where the supply of EOL products, the demand for components, and task times in disassembly are stochastic. This complex problem needs to jointly determine the number and locations of disassembly plants, disassembly equipment procurement, disassembly line balancing, and inventory levels of both EOL products collected and components dismantled. The objectives are to maximize the expected profit and minimize the carbon emissions simultaneously. For the problem, a bi-objective two-stage stochastic programming model is formulated and an exact ɛ-constrained method is proposed, transforming the bi-objective problem into a series of single-objective problems. Especially, an improved Benders decomposition approach is developed to solve each single-objective problem efficiently. Numerical experiments comprising an illustrative case and 200 random instances are conducted to evaluate the performance of proposed methods. Moreover, some managerial insights are drawn.

Suggested Citation

  • Hu, Peng & Chu, Feng & Dolgui, Alexandre & Chu, Chengbin & Liu, Ming, 2024. "Integrated multi-product reverse supply chain design and disassembly line balancing under uncertainty," Omega, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:jomega:v:126:y:2024:i:c:s030504832400029x
    DOI: 10.1016/j.omega.2024.103062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504832400029X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:126:y:2024:i:c:s030504832400029x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.