IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v41y2009i10p866-881.html
   My bibliography  Save this article

Two exact formulations for disassembly line balancing problems with task precedence diagram construction using an AND/OR graph

Author

Listed:
  • Ali Koc
  • Ihsan Sabuncuoglu
  • Erdal Erel

Abstract

In this paper, the disassembly line balancing problem, which involves determining a line design in which used products are completely disassembled to obtain useable components in a cost-effective manner, is studied. Because of the growing demand for a cleaner environment, this problem has become an important issue in reverse manufacturing. In this study, two exact formulations are developed that utilize an AND/OR Graph (AOG) as the main input to ensure the feasibility of the precedence relations among the tasks. It is also shown that traditional task precedence diagrams can be derived from the AOG of a given product structure. This procedure leads to considerably better solutions of the traditional assembly line balancing problems; it may alter the approach taken by previous researchers in this area.

Suggested Citation

  • Ali Koc & Ihsan Sabuncuoglu & Erdal Erel, 2009. "Two exact formulations for disassembly line balancing problems with task precedence diagram construction using an AND/OR graph," IISE Transactions, Taylor & Francis Journals, vol. 41(10), pages 866-881.
  • Handle: RePEc:taf:uiiexx:v:41:y:2009:i:10:p:866-881
    DOI: 10.1080/07408170802510390
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07408170802510390
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07408170802510390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Peng & Chu, Feng & Dolgui, Alexandre & Chu, Chengbin & Liu, Ming, 2024. "Integrated multi-product reverse supply chain design and disassembly line balancing under uncertainty," Omega, Elsevier, vol. 126(C).
    2. Wanlin Yang & Zixiang Li & Chenyu Zheng & Zikai Zhang & Liping Zhang & Qiuhua Tang, 2024. "Multi-Objective Optimization for a Partial Disassembly Line Balancing Problem Considering Profit and Carbon Emission," Mathematics, MDPI, vol. 12(8), pages 1-19, April.
    3. Mehmet Ali Ilgin & Hakan Akçay & Ceyhun Araz, 2017. "Disassembly line balancing using linear physical programming," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6108-6119, October.
    4. Tao Yin & Yuanzhi Wang & Shixi Cai & Yuxun Zhang & Jianyu Long, 2024. "Unified Modeling and Multi-Objective Optimization for Disassembly Line Balancing with Distinct Station Configurations," Mathematics, MDPI, vol. 12(17), pages 1-24, September.
    5. Jianhua Cao & Xuhui Xia & Lei Wang & Zelin Zhang & Xiang Liu, 2019. "A Novel Multi-Efficiency Optimization Method for Disassembly Line Balancing Problem," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    6. Devika Kannan & Kiran Garg & P. C. Jha & Ali Diabat, 2017. "Integrating disassembly line balancing in the planning of a reverse logistics network from the perspective of a third party provider," Annals of Operations Research, Springer, vol. 253(1), pages 353-376, June.
    7. Peng Hu & Feng Chu & Yunfei Fang & Peng Wu, 2022. "Novel distribution-free model and method for stochastic disassembly line balancing with limited distributional information," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1423-1446, July.
    8. Junkai He & Feng Chu & Feifeng Zheng & Ming Liu, 2021. "A green-oriented bi-objective disassembly line balancing problem with stochastic task processing times," Annals of Operations Research, Springer, vol. 296(1), pages 71-93, January.
    9. Bentaha, Mohand-Lounes & Voisin, Alexandre & Marangé, Pascale, 2020. "A decision tool for disassembly process planning under end-of-life product quality," International Journal of Production Economics, Elsevier, vol. 219(C), pages 386-401.
    10. Süleyman Mete & Faruk Serin & Zeynel Abidin Çil & Erkan Çelik & Eren Özceylan, 2023. "A comparative analysis of meta-heuristic methods on disassembly line balancing problem with stochastic time," Annals of Operations Research, Springer, vol. 321(1), pages 371-408, February.
    11. Can B. Kalayci & Olcay Polat & Surendra M. Gupta, 2016. "A hybrid genetic algorithm for sequence-dependent disassembly line balancing problem," Annals of Operations Research, Springer, vol. 242(2), pages 321-354, July.
    12. Ömer Faruk Yılmaz & Büşra Yazıcı, 2022. "Tactical level strategies for multi-objective disassembly line balancing problem with multi-manned stations: an optimization model and solution approaches," Annals of Operations Research, Springer, vol. 319(2), pages 1793-1843, December.
    13. Bentaha, Mohand Lounes & Battaïa, Olga & Dolgui, Alexandre & Hu, S. Jack, 2015. "Second order conic approximation for disassembly line design with joint probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 957-967.
    14. Lixia Zhu & Zeqiang Zhang & Yi Wang & Ning Cai, 2020. "On the end-of-life state oriented multi-objective disassembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1403-1428, August.
    15. Fang, Yilin & Liu, Quan & Li, Miqing & Laili, Yuanjun & Pham, Duc Truong, 2019. "Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations," European Journal of Operational Research, Elsevier, vol. 276(1), pages 160-174.
    16. Qi Zhang & Yang Xing & Man Yao & Jiacun Wang & Xiwang Guo & Shujin Qin & Liang Qi & Fuguang Huang, 2024. "An Improved Discrete Bat Algorithm for Multi-Objective Partial Parallel Disassembly Line Balancing Problem," Mathematics, MDPI, vol. 12(5), pages 1-22, February.
    17. Jia Liu & Shuwei Wang, 2017. "Balancing Disassembly Line in Product Recovery to Promote the Coordinated Development of Economy and Environment," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    18. Yusha Zhou & Xiuping Guo & Dong Li, 2022. "A dynamic programming approach to a multi-objective disassembly line balancing problem," Annals of Operations Research, Springer, vol. 311(2), pages 921-944, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:41:y:2009:i:10:p:866-881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.